dc.contributor.author |
PAI, VENKETESWARA R. |
en_US |
dc.contributor.author |
Ramasubramanian, K. |
en_US |
dc.contributor.author |
Sriram, M. S. |
en_US |
dc.contributor.author |
Srinivas, M. D. |
en_US |
dc.contributor.editor |
PAI, VENKETESWARA K. |
en_US |
dc.contributor.editor |
Ramasubramanian, K. |
en_US |
dc.contributor.editor |
Sriram, M. S. |
en_US |
dc.contributor.editor |
Srinivas, M. D. |
en_US |
dc.date.accessioned |
2022-06-24T11:02:46Z |
|
dc.date.available |
2022-06-24T11:02:46Z |
|
dc.date.issued |
2018-03 |
en_US |
dc.identifier.citation |
Karaṇapaddhati of Putumana Somayājī , 233–281. |
en_US |
dc.identifier.isbn |
978-981-10-6813-3 |
en_US |
dc.identifier.isbn |
978-981-10-6814-0 |
en_US |
dc.identifier.uri |
https://link.springer.com/chapter/10.1007/978-981-10-6814-0_8 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7203 |
|
dc.description.abstract |
The hypotenuse of the gnomon (palaśruti) is obtained by taking the square root of the sum of 144 (bhavaka) and the square of the mid-day shadow [of the gnomon] on the equinoctial day (viṣuvaddina).1 The mid-day shadow on the equinoctial day when multiplied by the radius (triguṇa) and divided by that [hypotenuse] would be the Rsine of the terrestrial latitude (akṣamaurvikā). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Humanities and Social Sciences |
en_US |
dc.subject |
2018 |
en_US |
dc.title |
Gnomonic shadow |
en_US |
dc.type |
Book chapter |
en_US |
dc.contributor.department |
Dept. of Humanities and Social Sciences |
en_US |
dc.title.book |
Karaṇapaddhati of Putumana Somayājī |
en_US |
dc.identifier.doi |
https://doi.org/10.1007/978-981-10-6814-0_8 |
en_US |
dc.identifier.sourcetitle |
Karaṇapaddhati of Putumana Somayājī |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |