Digital Repository

Powers in wreath products of finite groups

Show simple item record

dc.contributor.author KUNDU, RIJUBRATA en_US
dc.contributor.author MONDAL, SUDIPA en_US
dc.date.accessioned 2022-07-13T09:35:00Z
dc.date.available 2022-07-13T09:35:00Z
dc.date.issued 2022-09 en_US
dc.identifier.citation Journal of Group Theory, 25(5), 941-964. en_US
dc.identifier.issn 1435-4446 en_US
dc.identifier.uri https://doi.org/10.1515/jgth-2021-0057 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7241
dc.description.abstract In this paper, we compute powers in the wreath product G≀SnG≀Sn for any finite group 𝐺. For r≥2r≥2 a prime, consider ωr:G≀Sn→G≀Snωr:G≀Sn→G≀Sn defined by g↦grg↦gr . Let Pr(G≀Sn):=|ωr(G≀Sn) en_US
dc.description.abstract G|nn!Pr⁢(G≀Sn):=|ωr⁢(G≀Sn) en_US
dc.description.abstract G|n⁢n! be the probability that a randomly chosen element in G≀SnG≀Sn is an 𝑟-th power. We prove Pr(G≀Sn+1)=Pr(G≀Sn)Pr⁢(G≀Sn+1)=Pr⁢(G≀Sn) for all n≢−1(modr)n≢-1⁢(mod⁢r) if the order of 𝐺 is coprime to 𝑟. We also give a formula for the number of conjugacy classes that are 𝑟-th powers in G≀SnG≀Sn . en_US
dc.language.iso en en_US
dc.publisher De Gruyter en_US
dc.subject Mathematics en_US
dc.subject 2022 en_US
dc.title Powers in wreath products of finite groups en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Group Theory en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account