dc.contributor.author |
KUNDU, RIJUBRATA |
en_US |
dc.contributor.author |
MONDAL, SUDIPA |
en_US |
dc.date.accessioned |
2022-07-13T09:35:00Z |
|
dc.date.available |
2022-07-13T09:35:00Z |
|
dc.date.issued |
2022-09 |
en_US |
dc.identifier.citation |
Journal of Group Theory, 25(5), 941-964. |
en_US |
dc.identifier.issn |
1435-4446 |
en_US |
dc.identifier.uri |
https://doi.org/10.1515/jgth-2021-0057 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7241 |
|
dc.description.abstract |
In this paper, we compute powers in the wreath product G≀SnG≀Sn for any finite group 𝐺. For r≥2r≥2 a prime, consider ωr:G≀Sn→G≀Snωr:G≀Sn→G≀Sn defined by g↦grg↦gr . Let Pr(G≀Sn):=|ωr(G≀Sn) |
en_US |
dc.description.abstract |
G|nn!Pr(G≀Sn):=|ωr(G≀Sn) |
en_US |
dc.description.abstract |
G|nn! be the probability that a randomly chosen element in G≀SnG≀Sn is an 𝑟-th power. We prove Pr(G≀Sn+1)=Pr(G≀Sn)Pr(G≀Sn+1)=Pr(G≀Sn) for all n≢−1(modr)n≢-1(modr) if the order of 𝐺 is coprime to 𝑟. We also give a formula for the number of conjugacy classes that are 𝑟-th powers in G≀SnG≀Sn . |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
De Gruyter |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
2022 |
en_US |
dc.title |
Powers in wreath products of finite groups |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Group Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |