dc.contributor.author |
DASGUPTA, JYOTI |
en_US |
dc.contributor.author |
KHAN, BIVAS |
en_US |
dc.contributor.author |
Subramaniam, Aditya |
en_US |
dc.date.accessioned |
2022-07-22T10:55:28Z |
|
dc.date.available |
2022-07-22T10:55:28Z |
|
dc.date.issued |
2022-04 |
en_US |
dc.identifier.citation |
Journal of Algebra, 595, 38-68. |
en_US |
dc.identifier.issn |
0021-8693 |
en_US |
dc.identifier.issn |
1090-266X |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.jalgebra.2021.11.040 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7259 |
|
dc.description.abstract |
We compute Seshadri constants of a torus equivariant nef vector bundle on a projective space satisfying certain conditions. As an application, we compute Seshadri constants of tangent bundles on projective spaces. We also consider equivariant nef vector bundles on Bott towers of height 2 (i.e. Hirzebruch surfaces) and Bott towers of height 3 respectively. Assuming some conditions on the minimal slope of the restrictions of these bundles to invariant curves, we give precise values of Seshadri constant at an arbitrary point. We also give several examples illustrating our results. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Bott tower |
en_US |
dc.subject |
Mori cone |
en_US |
dc.subject |
Vector bundles |
en_US |
dc.subject |
Seshadri constant |
en_US |
dc.subject |
2022-JUL-WEEK2 |
en_US |
dc.subject |
TOC-JUL-2022 |
en_US |
dc.subject |
2022 |
en_US |
dc.title |
Seshadri constants of equivariant vector bundles on toric varieties |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Algebra |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |