dc.contributor.author |
Ganguly, Debdip |
en_US |
dc.contributor.author |
Pinchover, Yehuda |
en_US |
dc.contributor.author |
ROYCHOWDHURY, PRASUN |
en_US |
dc.date.accessioned |
2022-07-29T09:06:04Z |
|
dc.date.available |
2022-07-29T09:06:04Z |
|
dc.date.issued |
2022-07 |
en_US |
dc.identifier.citation |
Discrete and Continuous Dynamical Systems-Series S |
en_US |
dc.identifier.issn |
1937-1632 |
en_US |
dc.identifier.issn |
1937-1179 |
en_US |
dc.identifier.uri |
https://doi.org/10.3934/dcdss.2022138 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7286 |
|
dc.description.abstract |
Let P be a linear, second-order, elliptic operator with real coefficients defined on a noncompact Riemannian manifold M and satisfies P1 = 0 in M. Assume further that P admits a minimal positive Green function in M. We prove that there exists a smooth positive function rho defined on M such that M is stochastically incomplete with respect to the operator P-rho := rho P, that is,integral(M)kP(rho)(M)(x, y, t) dy < 1 for all (x, t) is an element of M x (0, infinity), where kP(rho)(M )denotes the minimal positive heat kernel associated with P-rho. Moreover, M is L-1-Liouville with respect to P-rho if and only if M is L-1-Liouville with respect to P. In addition, we study the interplay between stochastic completeness and the L-1-Liouville property of the skew product of two second-order elliptic operators. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Institute of Mathematical Sciences |
en_US |
dc.subject |
Green function |
en_US |
dc.subject |
L1-Liouville |
en_US |
dc.subject |
Optimal Hardy-weight |
en_US |
dc.subject |
Stochastically incomplete |
en_US |
dc.subject |
2022-JUL-WEEK4 |
en_US |
dc.subject |
TOC-JUL-2022 |
en_US |
dc.subject |
2022 |
en_US |
dc.title |
Stochastic completeness and $ L^1 $-Liouville property for second-order elliptic operators |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Discrete and Continuous Dynamical Systems-Series S |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |