Digital Repository

Fractional Hardy equations with critical and supercritical exponents

Show simple item record

dc.contributor.author BHAKTA, MOUSOMI en_US
dc.contributor.author Ganguly, Debdip en_US
dc.contributor.author Montoro, Luigi en_US
dc.date.accessioned 2022-08-19T11:27:13Z
dc.date.available 2022-08-19T11:27:13Z
dc.date.issued 2023-02 en_US
dc.identifier.citation Annali di Matematica Pura ed Applicata (1923 -), 202(1), 397–430. en_US
dc.identifier.issn 0373-3114 en_US
dc.identifier.issn 1618-1891 en_US
dc.identifier.uri https://doi.org/10.1007/s10231-022-01246-2 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7317
dc.description.abstract We study the existence, nonexistence and qualitative properties of the solutions to the problem where (p) {(-Delta)(s)u - theta u/vertical bar x vertical bar(2s) = u(p) - u(q) in R-N u > 0 in R-N u is an element of H-s (R-N) boolean AND Lq+1 (R-N), where s is an element of (0, 1), N > 2s, q > p >= (N + 2s)/(N - 2s), theta is an element of (0, Lambda(N,s)) and Lambda(N,s) is the sharp constant in the fractional Hardy inequality. For qualitative properties of the solutions, we mean both the radial symmetry, that is obtained by using the moving plane method in a nonlocal setting on the whole R-N, and a suitable upper bound behavior of the solutions. To this last end, we use a representation result that allows us to transform the original problem into a new nonlocal problem in a weighted fractional space. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Super-critical exponent en_US
dc.subject Fractional Laplacian en_US
dc.subject Hardy’s inequality en_US
dc.subject Harnack inequality en_US
dc.subject Moving plane method en_US
dc.subject 2022-AUG-WEEK3 en_US
dc.subject TOC-AUG-2022 en_US
dc.subject 2023 en_US
dc.title Fractional Hardy equations with critical and supercritical exponents en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Annali di Matematica Pura ed Applicata (1923 -) en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account