Digital Repository

Boundary regularity of mixed local-nonlocal operators and its application

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author MODASIYA, MITESH en_US
dc.contributor.author SEN, ABHROJYOTI en_US
dc.date.accessioned 2022-08-19T11:27:14Z
dc.date.available 2022-08-19T11:27:14Z
dc.date.issued 2023-04 en_US
dc.identifier.citation Annali di Matematica Pura ed Applicata (1923 -), 202(2), 679–710. en_US
dc.identifier.issn 0373-3114 en_US
dc.identifier.issn 1618-1891 en_US
dc.identifier.uri https://doi.org/10.1007/s10231-022-01256-0 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7323
dc.description.abstract Let ΩΩ be a bounded C2C2 domain in RnRn and u∈C(Rn)u∈C(Rn) solves Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc,Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc, in the viscosity sense, where 0≤a≤A00≤a≤A0, C0,K≥0C0,K≥0, and I is a suitable nonlocal operator. We show that u/δu/δ is in Cκ(Ω¯)Cκ(Ω¯) for some κ∈(0,1)κ∈(0,1), where δ(x)=dist(x,Ωc)δ(x)=dist⁡(x,Ωc). Using this result, we also establish that u∈C1,γ(Ω¯)u∈C1,γ(Ω¯).Finally, we apply these results to study an overdetermined problem for mixed local-nonlocal operators en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Operators of mixed order en_US
dc.subject Semilinear equation en_US
dc.subject Overdetermined problems en_US
dc.subject Gradient estimate en_US
dc.subject 2022-AUG-WEEK3 en_US
dc.subject TOC-AUG-2022 en_US
dc.subject 2023 en_US
dc.title Boundary regularity of mixed local-nonlocal operators and its application en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Annali di Matematica Pura ed Applicata (1923 -) en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account