dc.contributor.author | BISWAS, ANUP | en_US |
dc.contributor.author | MODASIYA, MITESH | en_US |
dc.contributor.author | SEN, ABHROJYOTI | en_US |
dc.date.accessioned | 2022-08-19T11:27:14Z | |
dc.date.available | 2022-08-19T11:27:14Z | |
dc.date.issued | 2023-04 | en_US |
dc.identifier.citation | Annali di Matematica Pura ed Applicata (1923 -), 202(2), 679–710. | en_US |
dc.identifier.issn | 0373-3114 | en_US |
dc.identifier.issn | 1618-1891 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10231-022-01256-0 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7323 | |
dc.description.abstract | Let ΩΩ be a bounded C2C2 domain in RnRn and u∈C(Rn)u∈C(Rn) solves Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc,Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc, in the viscosity sense, where 0≤a≤A00≤a≤A0, C0,K≥0C0,K≥0, and I is a suitable nonlocal operator. We show that u/δu/δ is in Cκ(Ω¯)Cκ(Ω¯) for some κ∈(0,1)κ∈(0,1), where δ(x)=dist(x,Ωc)δ(x)=dist(x,Ωc). Using this result, we also establish that u∈C1,γ(Ω¯)u∈C1,γ(Ω¯).Finally, we apply these results to study an overdetermined problem for mixed local-nonlocal operators | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Operators of mixed order | en_US |
dc.subject | Semilinear equation | en_US |
dc.subject | Overdetermined problems | en_US |
dc.subject | Gradient estimate | en_US |
dc.subject | 2022-AUG-WEEK3 | en_US |
dc.subject | TOC-AUG-2022 | en_US |
dc.subject | 2023 | en_US |
dc.title | Boundary regularity of mixed local-nonlocal operators and its application | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Annali di Matematica Pura ed Applicata (1923 -) | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |