Digital Repository

The Hartree and Hartree–Fock Equations in Lebesgue Lp and Fourier–Lebesgue Lˆp Spaces

Show simple item record

dc.contributor.author BHIMANI, DIVYANG G. en_US
dc.contributor.author Haque, Saikatul en_US
dc.date.accessioned 2022-10-28T09:11:50Z
dc.date.available 2022-10-28T09:11:50Z
dc.date.issued 2023-03 en_US
dc.identifier.citation Annales Henri Poincare, 24(3), 1005 - 1049. en_US
dc.identifier.issn 1424-0637 en_US
dc.identifier.issn 1424-0661 en_US
dc.identifier.uri https://doi.org/10.1007/s00023-022-01234-5 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7420
dc.description.abstract We establish some local and global well-posedness for Hartree–Fock equations of N particles (HFP) with Cauchy data in Lebesgue spaces Lp∩L2 for 1≤p≤∞. Similar results are proven for fractional HFP in Fourier–Lebesgue spaces Lˆp∩L2 (1≤p≤∞). On the other hand, we show that the Cauchy problem for HFP is mildly ill-posed if we simply work in Lˆp (2<p≤∞). Analogue results hold for reduced HFP. In the process, we prove the boundedeness of various trilinear estimates for Hartree type non linearity in these spaces which may be of independent interest. As a consequence, we get natural Lp and Lˆp extension of classical well-posedness theories of Hartree and Hartree–Fock equations with Cauchy data in just L2−based Sobolev spaces. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Mathematics en_US
dc.subject 2022-OCT-WEEK3 en_US
dc.subject TOC-OCT-2022 en_US
dc.subject 2023 en_US
dc.title The Hartree and Hartree–Fock Equations in Lebesgue Lp and Fourier–Lebesgue Lˆp Spaces en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Annales Henri Poincare en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account