Digital Repository

Toeplitz operators and Hilbert modules on the symmetrized polydisc

Show simple item record

dc.contributor.author Bhattacharyya, Tirthankar en_US
dc.contributor.author Das, B. Krishna en_US
dc.contributor.author SAU, HARIPADA en_US
dc.date.accessioned 2022-11-14T04:05:45Z
dc.date.available 2022-11-14T04:05:45Z
dc.date.issued 2022-10 en_US
dc.identifier.citation International Journal of Mathematics, 33(12), 2250076. en_US
dc.identifier.issn 0129-167X en_US
dc.identifier.issn 1793-6519 en_US
dc.identifier.uri https://doi.org/10.1142/S0129167X22500768 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7454
dc.description.abstract When is the collection of S-Toeplitz operators with respect to a tuple of commuting bounded operators S=(S1,S2,…,Sd−1,P), which has the symmetrized polydisc as a spectral set, nontrivial? The answer is in terms of powers of P as well as in terms of a unitary extension. En route, the Brown–Halmos relations are investigated. A commutant lifting theorem is established. Finally, we establish a general result connecting the C∗-algebra generated by the commutant of S and the commutant of its unitary extension R. en_US
dc.language.iso en en_US
dc.publisher World Scientific Publishing en_US
dc.subject Symmetrized polydisc en_US
dc.subject Polydisc en_US
dc.subject Toeplitz operator en_US
dc.subject Contractive Hilbert modules en_US
dc.subject Contractive embeddings en_US
dc.subject 2022-NOV-WEEK1 en_US
dc.subject TOC-NOV-2022 en_US
dc.subject 2022 en_US
dc.title Toeplitz operators and Hilbert modules on the symmetrized polydisc en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle International Journal of Mathematics en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account