dc.contributor.author |
Arapostathis, Ari |
en_US |
dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
ROYCHOWDHURY, PRASUN |
en_US |
dc.date.accessioned |
2022-12-09T05:55:58Z |
|
dc.date.available |
2022-12-09T05:55:58Z |
|
dc.date.issued |
2023-01 |
en_US |
dc.identifier.citation |
Nonlinear Differential Equations and Applications, 30, 10. |
en_US |
dc.identifier.issn |
1021-9722 |
en_US |
dc.identifier.issn |
1420-9004 |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s00030-022-00821-z |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7494 |
|
dc.description.abstract |
We study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure. Some of our results even hold for singular kernels. The first part of the paper presents results concerning the existence of a principal eigenfunction. Then we present various necessary and/or sufficient conditions for the maximum principle to hold, and use these to characterize the simplicity of the principal eigenvalue. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Principal eigenvalue |
en_US |
dc.subject |
Nonlocal operators |
en_US |
dc.subject |
Maximum principle |
en_US |
dc.subject |
Simple eigenvalue |
en_US |
dc.subject |
Harnack inequality |
en_US |
dc.subject |
2022-DEC-WEEK1 |
en_US |
dc.subject |
TOC-DEC-2022 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Generalized principal eigenvalues on Rd of second order elliptic operators with rough nonlocal kernels |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Nonlinear Differential Equations and Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |