dc.contributor.author |
ARVIND, NAMRATA |
en_US |
dc.contributor.author |
PANJA, SAIKAT |
en_US |
dc.date.accessioned |
2023-01-20T05:39:08Z |
|
dc.date.available |
2023-01-20T05:39:08Z |
|
dc.date.issued |
2023-04 |
en_US |
dc.identifier.citation |
Journal of Pure and Applied Algebra, 227(4), 107261. |
en_US |
dc.identifier.issn |
0022-4049 |
en_US |
dc.identifier.issn |
1873-1376 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.jpaa.2022.107261 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7562 |
|
dc.description.abstract |
Let G and N be finite groups of order 2n where n is odd. We say the pair (G, N) is Hopf-Galois realizable if G is a regular subgroup of Hol(N) = N (sic) Aut(N). In this article we give necessary conditions on G (similarly N) when N (similarly G) is a group of the form Z(n) (sic) Z(2), for (G, N) to be realizable. Further we show that this condition is also sufficient if radical of n is a Burnside number. This classifies all skew braces which have the additive group (or the multiplicative group) isomorphic to Zn A Z2, in this case |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Hopf-Galois structures |
en_US |
dc.subject |
Skew bracesRealizability |
en_US |
dc.subject |
2023-JAN-WEEK1 |
en_US |
dc.subject |
TOC-JAN-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Hopf-Galois realizability of Z(n) (sic) Z(2) |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Pure and Applied Algebra |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |