dc.contributor.author |
BHIMANI, DIVYANG G. |
en_US |
dc.date.accessioned |
2023-02-08T03:47:34Z |
|
dc.date.available |
2023-02-08T03:47:34Z |
|
dc.date.issued |
2023-03 |
en_US |
dc.identifier.citation |
Nonlinear Differential Equations and Applications, 30(2), 19. |
en_US |
dc.identifier.issn |
1021-9722 |
en_US |
dc.identifier.issn |
1420-9004 |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s00030-022-00828-6 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7602 |
|
dc.description.abstract |
We produce a finite time blow-up solution for nonlinear fractional heat equation (& part;(t)u + (-delta)(beta /2u) = u(k)) in modulation and Fourier amalgam spaces on the torus T-d and the Euclidean space R-d. This complements several known local and small data global well-posedness results in modulation spaces on R-d. Our method of proof rely on the formal solution of the equation. This method should be further applied to other non-linear evolution equations. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Fractional heat equations |
en_US |
dc.subject |
Blow-up solution |
en_US |
dc.subject |
Modulation spaces |
en_US |
dc.subject |
Fourier amalgam spaces |
en_US |
dc.subject |
2023-FEB-WEEK1 |
en_US |
dc.subject |
TOC-FEB-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
The blow-up solutions for fractional heat equations on torus and Euclidean space |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Nonlinear Differential Equations and Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |