Digital Repository

The blow-up solutions for fractional heat equations on torus and Euclidean space

Show simple item record

dc.contributor.author BHIMANI, DIVYANG G. en_US
dc.date.accessioned 2023-02-08T03:47:34Z
dc.date.available 2023-02-08T03:47:34Z
dc.date.issued 2023-03 en_US
dc.identifier.citation Nonlinear Differential Equations and Applications, 30(2), 19. en_US
dc.identifier.issn 1021-9722 en_US
dc.identifier.issn 1420-9004 en_US
dc.identifier.uri https://doi.org/10.1007/s00030-022-00828-6 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7602
dc.description.abstract We produce a finite time blow-up solution for nonlinear fractional heat equation (& part;(t)u + (-delta)(beta /2u) = u(k)) in modulation and Fourier amalgam spaces on the torus T-d and the Euclidean space R-d. This complements several known local and small data global well-posedness results in modulation spaces on R-d. Our method of proof rely on the formal solution of the equation. This method should be further applied to other non-linear evolution equations. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Fractional heat equations en_US
dc.subject Blow-up solution en_US
dc.subject Modulation spaces en_US
dc.subject Fourier amalgam spaces en_US
dc.subject 2023-FEB-WEEK1 en_US
dc.subject TOC-FEB-2023 en_US
dc.subject 2023 en_US
dc.title The blow-up solutions for fractional heat equations on torus and Euclidean space en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Nonlinear Differential Equations and Applications en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account