dc.contributor.author |
KALELKAR, TEJAS |
en_US |
dc.contributor.author |
Nair, Ramya |
en_US |
dc.date.accessioned |
2023-03-13T10:35:52Z |
|
dc.date.available |
2023-03-13T10:35:52Z |
|
dc.date.issued |
2023 |
en_US |
dc.identifier.citation |
Topology Proceedings, 62, 45-63. |
en_US |
dc.identifier.issn |
2331-1290 |
en_US |
dc.identifier.issn |
0146-4124 |
en_US |
dc.identifier.uri |
http://topology.nipissingu.ca/tp/reprints/v62/tp62004p1.pdf |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7657 |
|
dc.description.abstract |
A prism is the product space ∆ × I where ∆ is a 2-
simplex and I is a closed interval. We introduce prism complexes as
an analogue of simplicial complexes and show that every compact
3-manifold has a prism complex structure. We call a prism complex special if each interior horizontal edge lies in four prisms, each
boundary horizontal edge lies in two prisms, and no horizontal face
lies on the boundary. We give a criterion for existence of horizontal surfaces in (possibly non-orientable) Seifert ber spaces. Using
this, we show that a compact 3-manifold admits a special prism
complex structure if and only if it is a Seifert ber space with nonempty boundary, a Seifert ber space with a non-empty collection
of surfaces in its exceptional set, or a closed Seifert ber space with
Euler number zero. So, in particular, a compact 3-manifold with
boundary is a Seifert ber space if and only if it has a special prism
complex structure. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Nipissing University, North Bay, Ontario, Canada. |
en_US |
dc.subject |
Cube complexes |
en_US |
dc.subject |
Seifert fiber space |
en_US |
dc.subject |
2023-MAR-WEEK2 |
en_US |
dc.subject |
TOC-MAR-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Prism Complexes |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Topology Proceedings |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |