dc.contributor.author |
Lima, Paloma T. |
en_US |
dc.contributor.author |
Santos, Vinicius F. dos |
en_US |
dc.contributor.author |
Sau, Ignasi |
en_US |
dc.contributor.author |
Souza, Uéverton S. |
en_US |
dc.contributor.author |
TALE, PRAFULLKUMAR |
en_US |
dc.date.accessioned |
2023-04-19T06:48:09Z |
|
dc.date.available |
2023-04-19T06:48:09Z |
|
dc.date.issued |
2023-09 |
en_US |
dc.identifier.citation |
Journal of Computer and System Sciences, 136, 63-87. |
en_US |
dc.identifier.issn |
1090-2724 |
en_US |
dc.identifier.issn |
0022-0000 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.jcss.2023.03.003 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7709 |
|
dc.description.abstract |
Given a graph G on n vertices and two integers k and d, the Contraction(vc) problem asks whether one can contract at most k edges to reduce the vertex cover number of G by at least d. Recently, Lima et al. [JCSS 2021] proved that Contraction(vc) admits an XP algorithm running in time . They asked whether this problem is FPT under this parameterization. In this article, we prove that: (i) Contraction(vc) is W[1]-hard parameterized by . Moreover, unless the ETH fails, the problem does not admit an algorithm running in time for any function f. This answers negatively the open question stated in Lima et al. [JCSS 2021]. (ii) Contraction(vc) is NP-hard even when . (iii) Contraction(vc) can be solved in time . This improves the algorithm of Lima et al. [JCSS 2021], and shows that when , Contraction(vc) is FPT parameterized by d (or by k). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Blocker problems |
en_US |
dc.subject |
Edge contraction |
en_US |
dc.subject |
Vertex cover |
en_US |
dc.subject |
Parameterized complexity |
en_US |
dc.subject |
2023-APR-WEEK1 |
en_US |
dc.subject |
TOC-APR-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Reducing the vertex cover number via edge contractions |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Computer and System Sciences |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |