Digital Repository

A single exponential-time FPT algorithm for cactus contraction

Show simple item record

dc.contributor.author Krithika, R. en_US
dc.contributor.author Misra , Pranabendu en_US
dc.contributor.author TALE, PRAFULLKUMAR en_US
dc.date.accessioned 2023-04-19T06:48:09Z
dc.date.available 2023-04-19T06:48:09Z
dc.date.issued 2023-04 en_US
dc.identifier.citation Theoretical Computer Science, 954, 113803. en_US
dc.identifier.issn 0304-3975 en_US
dc.identifier.issn 1879-2294 en_US
dc.identifier.uri https://doi.org/10.1016/j.tcs.2023.113803 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7715
dc.description.abstract For a collection F of graphs, the F-CONTRACTION problem takes a graph G and an integer k as input and decides if G can be modified to some graph in F using at most k edge contractions. The F-CONTRACTION problem is NP-Complete for several graph classes F. Heggernes et al. (2014) [4] initiated the study of F-CONTRACTION in the realm of parameterized complexity. They showed that it is FPT if F is the set of all trees or the set of all paths. In this paper, we study F-CONTRACTION where F is the set of all cactus graphs and show that we can solve it in 2O(k) center dot |V(G)|O(1) time. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Fixed parameter tractable algorithms en_US
dc.subject Graph contraction en_US
dc.subject Cactus graphs en_US
dc.subject 2023-APR-WEEK1 en_US
dc.subject TOC-APR-2023 en_US
dc.subject 2023 en_US
dc.title A single exponential-time FPT algorithm for cactus contraction en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Theoretical Computer Science en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account