dc.contributor.author |
Krithika, R. |
en_US |
dc.contributor.author |
Misra , Pranabendu |
en_US |
dc.contributor.author |
TALE, PRAFULLKUMAR |
en_US |
dc.date.accessioned |
2023-04-19T06:48:09Z |
|
dc.date.available |
2023-04-19T06:48:09Z |
|
dc.date.issued |
2023-04 |
en_US |
dc.identifier.citation |
Theoretical Computer Science, 954, 113803. |
en_US |
dc.identifier.issn |
0304-3975 |
en_US |
dc.identifier.issn |
1879-2294 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.tcs.2023.113803 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7715 |
|
dc.description.abstract |
For a collection F of graphs, the F-CONTRACTION problem takes a graph G and an integer k as input and decides if G can be modified to some graph in F using at most k edge contractions. The F-CONTRACTION problem is NP-Complete for several graph classes F. Heggernes et al. (2014) [4] initiated the study of F-CONTRACTION in the realm of parameterized complexity. They showed that it is FPT if F is the set of all trees or the set of all paths. In this paper, we study F-CONTRACTION where F is the set of all cactus graphs and show that we can solve it in 2O(k) center dot |V(G)|O(1) time. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Fixed parameter tractable algorithms |
en_US |
dc.subject |
Graph contraction |
en_US |
dc.subject |
Cactus graphs |
en_US |
dc.subject |
2023-APR-WEEK1 |
en_US |
dc.subject |
TOC-APR-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
A single exponential-time FPT algorithm for cactus contraction |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Theoretical Computer Science |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |