dc.contributor.author |
Kundu, Rijubrata |
en_US |
dc.contributor.author |
Naik, Tushar Kanta |
en_US |
dc.contributor.author |
SINGH, ANUPAM |
en_US |
dc.date.accessioned |
2023-04-19T06:48:29Z |
|
dc.date.available |
2023-04-19T06:48:29Z |
|
dc.date.issued |
2023-03 |
en_US |
dc.identifier.citation |
Communications in Algebra, 51(09), 3792-3809. |
en_US |
dc.identifier.issn |
0092-7872 |
en_US |
dc.identifier.issn |
1532-4125 |
en_US |
dc.identifier.uri |
https://doi.org/10.1080/00927872.2023.2188416 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7721 |
|
dc.description.abstract |
For a natural number m, a Lie algebra L over a field k is said to be of breadth type (0,m) if the co-dimension of the centralizer of every non-central element is m. In this article, we classify finite dimensional nilpotent Lie algebras of breadth type (0,3) over F-q of odd characteristic up to isomorphism. We also give a partial classification of the same over finite fields of even characteristic, C and R. We also discuss 2-step nilpotent Camina Lie algebras. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Tayor & Francis |
en_US |
dc.subject |
Breadth type |
en_US |
dc.subject |
Camina Lie algebras |
en_US |
dc.subject |
nilpotent Lie algebras |
en_US |
dc.subject |
2023-APR-WEEK1 |
en_US |
dc.subject |
TOC-APR-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Nilpotent Lie algebras of breadth type (0,3) |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Communications in Algebra |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |