Digital Repository

Inverse boundary value problems for polyharmonic operators in two dimensions

Show simple item record

dc.contributor.advisor Krishnan, Venkateswaran P.
dc.contributor.author RAJAT
dc.date.accessioned 2023-05-18T11:14:12Z
dc.date.available 2023-05-18T11:14:12Z
dc.date.issued 2023-04
dc.identifier.citation 52 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7918
dc.description.abstract In this thesis, I study an inverse boundary value problem in two dimensions for a polyharmonic operator of the form \begin{equation*} \mathcal{L} = \partial^{m}\bar{\partial}^{m} + \sum_{j,k = 0}^{m-1}{A_{j,k}\partial^{j}\bar{\partial}^{k}}, \quad m\geq 2. \end{equation*} The inverse problem is whether we can recover uniquely the coefficients $A_{j,k}$ from the set of Cauchy data \begin{equation*} \mathcal{C}(\mathcal{L}) = \left\{ \left( u|_{\partial\Omega}, \partial_{\nu}u|_{\partial\Omega}, \partial_{\nu}^{2}u|_{\partial\Omega} \ldots, \partial_\nu^{(2m-1)}u|_{\partial\Omega} \right): u \in H^{2m}(\Omega), \mathcal{L}u =0\right\}, \end{equation*} where $\nu$ is an outer unit normal to $\partial\Omega$. In joint work with Prof. Krishnan and Dr. Rahul Raju Pattar, I establish that the Cauchy data for a polyharmonic operator uniquely determines all anisotropic perturbations of order at most $m-1$ and several perturbations of orders $m$ to $2m-2$ with some restrictions. This restriction is captured in the following representation of the operator $\mathcal{L}$ as \[(\partial \bar{\partial})^{m} + A_{m-1,m-1}(\partial\bar{\partial})^{m-1} + \sum_{l=1}^{m-2}{\left(\sum_{j+k=m-l-1}{A_{j+l,k+l}\partial^j\bar\partial^k}\right)(\partial\bar\partial)^l } + \sum_{l=0}^{m-1}\sum_{j + k = l}{A_{j,k}\partial^{j}\bar{\partial}^{k}}. \] We start this thesis with the Calderón inverse problem, where we followed Prof. Pedro Caro's class lecture notes. This is the first problem that represents many ideas. The proof given here is based on Carleman estimates which is different from the original proof of Sylvester and Uhlmannn. It is the primary technique in partial data inverse problems for constructing CGO solutions. After that, we study the inverse boundary value problem for Schr\"{o}dinger operator, which will help to discuss our original contribution. en_US
dc.language.iso en_US en_US
dc.subject Inverse boundary value problem; Perturbed two-dimensional polyharmonic operator; Cauchy data; Uniqueness. en_US
dc.title Inverse boundary value problems for polyharmonic operators in two dimensions en_US
dc.type Thesis en_US
dc.description.embargo One Year en_US
dc.type.degree MS-exit en_US
dc.contributor.department Dept. of Mathematics en_US
dc.contributor.registration 20202023 en_US


Files in this item

This item appears in the following Collection(s)

  • MS THESES [1705]
    Thesis submitted to IISER Pune in partial fulfilment of the requirements for the BS-MS Dual Degree Programme/MSc. Programme/MS-Exit Programme

Show simple item record

Search Repository


Advanced Search

Browse

My Account