dc.contributor.author |
SEN, ABHROJYOTI |
en_US |
dc.date.accessioned |
2023-06-26T03:56:27Z |
|
dc.date.available |
2023-06-26T03:56:27Z |
|
dc.date.issued |
2023-05 |
en_US |
dc.identifier.citation |
Forum Mathematicum, 35(06), 1549-1561. |
en_US |
dc.identifier.issn |
0933-7741 |
en_US |
dc.identifier.issn |
1435-5337 |
en_US |
dc.identifier.uri |
https://doi.org/10.1515/forum-2022-0331 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8048 |
|
dc.description.abstract |
Let Omega subset of R-n be any open set and u a weak supersolution of Lu = c(x)g(vertical bar u vertical bar) u/vertical bar u vertical bar, where |u|, where
Lu(x) = p.v. (Rn)integral g vertical bar u(x)-u(y)vertical bar/vertical bar x-y vertical bar(s)) u(x) -u (y)/vertical bar u(x) - u(y)vertical bar K(x;y)dy/vertical bar x -y vertical bar(s) and g = G' for some Young function G. This note imparts a Hopf type lemma and strong minimum principle for u when c(x) is continuous in (Omega) over bar that extend the results of Del Pezzo and Quaas [A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765-778] in fractional Orlicz-Sobolev setting. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Walter de Gruyter |
en_US |
dc.subject |
Fractional nonlocal equations |
en_US |
dc.subject |
Young function |
en_US |
dc.subject |
Hopf's lemma |
en_US |
dc.subject |
Strong minimum principle |
en_US |
dc.subject |
Fractional Orlicz-Sobolev space |
en_US |
dc.subject |
2023-JUN-WEEK1 |
en_US |
dc.subject |
TOC-JUN-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growth |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Forum Mathematicum |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |