Digital Repository

A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growth

Show simple item record

dc.contributor.author SEN, ABHROJYOTI en_US
dc.date.accessioned 2023-06-26T03:56:27Z
dc.date.available 2023-06-26T03:56:27Z
dc.date.issued 2023-05 en_US
dc.identifier.citation Forum Mathematicum, 35(06), 1549-1561. en_US
dc.identifier.issn 0933-7741 en_US
dc.identifier.issn 1435-5337 en_US
dc.identifier.uri https://doi.org/10.1515/forum-2022-0331 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8048
dc.description.abstract Let Omega subset of R-n be any open set and u a weak supersolution of Lu = c(x)g(vertical bar u vertical bar) u/vertical bar u vertical bar, where |u|, where Lu(x) = p.v. (Rn)integral g vertical bar u(x)-u(y)vertical bar/vertical bar x-y vertical bar(s)) u(x) -u (y)/vertical bar u(x) - u(y)vertical bar K(x;y)dy/vertical bar x -y vertical bar(s) and g = G' for some Young function G. This note imparts a Hopf type lemma and strong minimum principle for u when c(x) is continuous in (Omega) over bar that extend the results of Del Pezzo and Quaas [A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations 263 (2017), no. 1, 765-778] in fractional Orlicz-Sobolev setting. en_US
dc.language.iso en en_US
dc.publisher Walter de Gruyter en_US
dc.subject Fractional nonlocal equations en_US
dc.subject Young function en_US
dc.subject Hopf's lemma en_US
dc.subject Strong minimum principle en_US
dc.subject Fractional Orlicz-Sobolev space en_US
dc.subject 2023-JUN-WEEK1 en_US
dc.subject TOC-JUN-2023 en_US
dc.subject 2023 en_US
dc.title A note on Hopf’s lemma and strong minimum principle for nonlocal equations with non-standard growth en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Forum Mathematicum en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account