dc.contributor.author |
Dasgupta, Jyoti |
en_US |
dc.contributor.author |
KHAN, BIVAS |
en_US |
dc.contributor.author |
Biswas, Indranil |
en_US |
dc.contributor.author |
Dey, Arijit |
en_US |
dc.contributor.author |
PODDAR, MAINAK |
en_US |
dc.date.accessioned |
2023-07-31T10:46:33Z |
|
dc.date.available |
2023-07-31T10:46:33Z |
|
dc.date.issued |
2023-07 |
en_US |
dc.identifier.citation |
Transformation Groups |
en_US |
dc.identifier.issn |
1531-586X |
en_US |
dc.identifier.issn |
1083-4362 |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s00031-023-09812-5 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8104 |
|
dc.description.abstract |
Let X be a complex toric variety equipped with the action of an algebraic torus T, and let G be a complex linear algebraic group. We classify all T-equivariant principal G-bundles \mathcal {E} over X and the morphisms between them. When G is connected and reductive, we characterize the equivariant automorphism group \text {Aut}_T(\mathcal {E} ) of \mathcal {E} as the intersection of certain parabolic subgroups of G that arise naturally from the T-action on \mathcal {E}. We then give a criterion for the equivariant reduction of the structure group of \mathcal {E} to a Levi subgroup of G in terms of \text {Aut}_T(\mathcal {E} ). We use it to prove a principal bundle analogue of Kaneyama’s theorem on equivariant splitting of torus equivariant vector bundles of small rank over a projective space. When X is projective and G is connected and reductive, we show that the notions of stability and equivariant stability are equivalent for any T-equivariant principal G-bundle over X. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Toric variety |
en_US |
dc.subject |
Equivariant principal bundle |
en_US |
dc.subject |
Stability |
en_US |
dc.subject |
Automorphism |
en_US |
dc.subject |
Levi reduction |
en_US |
dc.subject |
2023-JUL-WEEK4 |
en_US |
dc.subject |
TOC-JUL-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Classification, Reduction, and Stability of Toric Principal Bundles |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Transformation Groups |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |