Digital Repository

Machine-learning-based automated loading of strontium isotopes into magneto-optical trap

Show simple item record

dc.contributor.author BISWAS, KORAK en_US
dc.contributor.author PATEL, KUSHAL en_US
dc.contributor.author MAURYA, S. SAGAR en_US
dc.contributor.author DUTTA, PRANAB en_US
dc.contributor.author RAPOL, UMAKANT D. en_US
dc.date.accessioned 2023-08-11T07:21:48Z
dc.date.available 2023-08-11T07:21:48Z
dc.date.issued 2023-07 en_US
dc.identifier.citation AIP Advances 13(07), 075313. en_US
dc.identifier.issn 2158-3226 en_US
dc.identifier.uri https://doi.org/10.1063/5.0145844 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8119
dc.description.abstract We implemented optimization techniques of machine learning (ML) to obtain the mutually exclusive sets of experimental parameters that maximize the number of strontium atoms of different isotopes (88Sr, 86Sr, and 87Sr) in a magneto-optical trap (MOT). Machine learning optimization techniques are significantly faster than conventional manual optimization. While optimizing the parameters, these algorithms efficiently tackle the problem of being confined in one of the local maxima in the parametric space. Thus, ML can be implemented to automate the loading of different isotopes into MOT to perform multiple experiments in a single setup. en_US
dc.language.iso en en_US
dc.publisher AIP Publishing en_US
dc.subject Atoms en_US
dc.subject 2023-AUG-WEEK1 en_US
dc.subject TOC-AUG-2023 en_US
dc.subject 2023 en_US
dc.title Machine-learning-based automated loading of strontium isotopes into magneto-optical trap en_US
dc.type Article en_US
dc.contributor.department Dept. of Physics en_US
dc.identifier.sourcetitle AIP Advances en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account