dc.contributor.author |
Noel, Jonathan A. |
en_US |
dc.contributor.author |
RANGANATHAN, ARJUN |
en_US |
dc.date.accessioned |
2023-08-25T05:37:46Z |
|
dc.date.available |
2023-08-25T05:37:46Z |
|
dc.date.issued |
2023-06 |
en_US |
dc.identifier.citation |
Electronic Journal of Combinatorics, 30(02). |
en_US |
dc.identifier.issn |
1077-8926 |
en_US |
dc.identifier.uri |
https://doi.org/10.37236/11307 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8160 |
|
dc.description.abstract |
GivenrÍ2andanr-uniformhypergraphF,theF-bootstrapprocessstartswithanr-uniformhypergraphHand,ineachtimestep,everyhyperedgewhich“completes”acopyofFisaddedtoH.Themaximumrunningtimeofthispro-cesshasbeenrecentlystudiedinthecasethatr=2andFisacompletegraphbyBollob ́as,Przykucki,RiordanandSahasrabudhe[Electron.J.Combin.24(2)(2017),PaperNo.2.16],Matzke[arXiv:1510.06156v2]andBalogh,Kronenberg,PokrovskiyandSzab ́o[arXiv:1907.04559v1].WeconsiderthecasethatrÍ3andFisthecompleter-uniformhypergraphonkvertices.OurmainresultsarethatthemaximumrunningtimeisΘ(nr)ifkÍr+2andΩ nr−1 ifk=r+1.Forthecasek=r+1,weconjecturethatourlowerboundisoptimaluptoaconstantfactorwhenr=3,butsuspectthatitcanbeimprovedbymorethanaconstantfactorforlarger. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Electronic Journal of Combinatorics |
en_US |
dc.subject |
Metastability threshold |
en_US |
dc.subject |
Sharp threshold |
en_US |
dc.subject |
Saturation |
en_US |
dc.subject |
Bounds |
en_US |
dc.subject |
2023-AUG-WEEK3 |
en_US |
dc.subject |
TOC-AUG-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
On the Running Time of Hypergraph Bootstrap Percolation |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Electronic Journal of Combinatorics |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |