dc.contributor.author |
Bharali, Gautam |
en_US |
dc.contributor.author |
BORAH, DIGANTA |
en_US |
dc.contributor.author |
Gorai, Sushil |
en_US |
dc.date.accessioned |
2023-11-24T06:35:33Z |
|
dc.date.available |
2023-11-24T06:35:33Z |
|
dc.date.issued |
2023-10 |
en_US |
dc.identifier.citation |
Journal of Geometric Analysis, 33, 383. |
en_US |
dc.identifier.issn |
1050-6926 |
en_US |
dc.identifier.issn |
1559-002X |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s12220-023-01439-y |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8307 |
|
dc.description.abstract |
We present a new application of the squeezing function s(D), using which one may detect when a given bounded pseudoconvex domain D not subset of C-n, n >= 2, is not biholomorphic to any product domain. One of the ingredients used in establishing this result is also used to give an exact computation of the squeezing function (which is a constant) of any bounded symmetric domain. This extends a computation by Kubota to any Cartesian product of Cartan domains at least one of which is an exceptional domain. Our method circumvents any case-by-case analysis by rank and also provides optimal estimates for the squeezing functions of certain domains. Lastly, we identify a family of bounded domains that are holomorphic homogeneous regular. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Holomorphic homogeneous regular domains |
en_US |
dc.subject |
Cartan domains |
en_US |
dc.subject |
Squeezing function |
en_US |
dc.subject |
2023-NOV-WEEK3 |
en_US |
dc.subject |
TOC-NOV-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
The Squeezing Function: Exact Computations, Optimal Estimates, and a New Application |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Geometric Analysis |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |