Digital Repository

Non-vanishing of theta components of Jacobi forms with level and an application

Show simple item record

dc.contributor.author ANAMBY, PRAMATH en_US
dc.date.accessioned 2023-12-19T11:03:17Z
dc.date.available 2023-12-19T11:03:17Z
dc.date.issued 2023-11 en_US
dc.identifier.citation International Journal of Number Theory, 20(02), 549-564. en_US
dc.identifier.issn 1793-0421 en_US
dc.identifier.issn 1793-7310 en_US
dc.identifier.uri https://doi.org/10.1142/S1793042124500295 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8354
dc.description.abstract We prove that a nonzero Jacobi form of level N (an odd integer) and square-free index m(1)m(2) with m1|N and (N, m(2)) = 1 has a nonzero theta component h mu with either (mu, 2m(1)m(2)) = 1 or (mu, 2m(1)m(2)) f (2)m(2). As an application, we prove that a nonzero Siegel cusp form F of degree 2 and an odd level N in the Atkin-Lehner type newspace is determined by fundamental Fourier coefficients up to a divisor of N. en_US
dc.language.iso en en_US
dc.publisher World Scientific Publishing Co Pte Ltd en_US
dc.subject Jacobi forms en_US
dc.subject theta components en_US
dc.subject Fourier coefficients en_US
dc.subject Siegel modular forms en_US
dc.subject non-vanishing en_US
dc.subject 2023-DEC-WEEK3 en_US
dc.subject TOC-DEC-2023 en_US
dc.subject 2023 en_US
dc.title Non-vanishing of theta components of Jacobi forms with level and an application en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle International Journal of Number Theory en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account