dc.contributor.author |
ANAMBY, PRAMATH |
en_US |
dc.date.accessioned |
2023-12-19T11:03:17Z |
|
dc.date.available |
2023-12-19T11:03:17Z |
|
dc.date.issued |
2023-11 |
en_US |
dc.identifier.citation |
International Journal of Number Theory, 20(02), 549-564. |
en_US |
dc.identifier.issn |
1793-0421 |
en_US |
dc.identifier.issn |
1793-7310 |
en_US |
dc.identifier.uri |
https://doi.org/10.1142/S1793042124500295 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8354 |
|
dc.description.abstract |
We prove that a nonzero Jacobi form of level N (an odd integer) and square-free index m(1)m(2) with m1|N and (N, m(2)) = 1 has a nonzero theta component h mu with either (mu, 2m(1)m(2)) = 1 or (mu, 2m(1)m(2)) f (2)m(2). As an application, we prove that a nonzero Siegel cusp form F of degree 2 and an odd level N in the Atkin-Lehner type newspace is determined by fundamental Fourier coefficients up to a divisor of N. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing Co Pte Ltd |
en_US |
dc.subject |
Jacobi forms |
en_US |
dc.subject |
theta components |
en_US |
dc.subject |
Fourier coefficients |
en_US |
dc.subject |
Siegel modular forms |
en_US |
dc.subject |
non-vanishing |
en_US |
dc.subject |
2023-DEC-WEEK3 |
en_US |
dc.subject |
TOC-DEC-2023 |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Non-vanishing of theta components of Jacobi forms with level and an application |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Journal of Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |