Digital Repository

Prasad’s Conjecture About Dualizing Involutions

Show simple item record

dc.contributor.author AROTE, PRASHANT en_US
dc.contributor.author MISHRA, MANISH en_US
dc.date.accessioned 2024-01-24T04:25:48Z
dc.date.available 2024-01-24T04:25:48Z
dc.date.issued 2024-05 en_US
dc.identifier.citation International Mathematics Research Notices, 2024(09), 7700–7720. en_US
dc.identifier.issn 1073-7928 en_US
dc.identifier.issn 1687-0247 en_US
dc.identifier.uri https://doi.org/10.1093/imrn/rnad296 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8402
dc.description.abstract Let $G$ be a connected reductive group defined over a finite field ${\mathbb{F}}_{q}$ with corresponding Frobenius $F$. Let $\iota _{G}$ denote the duality involution defined by D. Prasad under the hypothesis $2\textrm{H}<^>{1}(F,Z(G))=0$, where $Z(G)$ denotes the center of $G$. We show that for each irreducible character $\rho $ of $G<^>{F}$, the involution $\iota _{G}$ takes $\rho $ to its dual $\rho <^>{\vee }$ if and only if for a suitable Jordan decomposition of characters, an associated unipotent character $u_{\rho }$ has Frobenius eigenvalues $\pm $ 1. As a corollary, we obtain that if $G$ has no exceptional factors and satisfies $2\textrm{H}<^>{1}(F,Z(G))=0$, then the duality involution $\iota _{G}$ takes $\rho $ to its dual $\rho <^>{\vee }$ for each irreducible character $\rho $ of $G<^>{F}$. Our results resolve a finite group counterpart of a conjecture of D. Prasad. en_US
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.subject Reductive groups en_US
dc.subject Characters en_US
dc.subject Representations en_US
dc.subject 2024-JAN-WEEK1 en_US
dc.subject TOC-JAN-2024 en_US
dc.subject 2024 en_US
dc.title Prasad’s Conjecture About Dualizing Involutions en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle International Mathematics Research Notices en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account