dc.contributor.author |
AROTE, PRASHANT |
en_US |
dc.contributor.author |
MISHRA, MANISH |
en_US |
dc.date.accessioned |
2024-01-24T04:25:48Z |
|
dc.date.available |
2024-01-24T04:25:48Z |
|
dc.date.issued |
2024-05 |
en_US |
dc.identifier.citation |
International Mathematics Research Notices, 2024(09), 7700–7720. |
en_US |
dc.identifier.issn |
1073-7928 |
en_US |
dc.identifier.issn |
1687-0247 |
en_US |
dc.identifier.uri |
https://doi.org/10.1093/imrn/rnad296 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8402 |
|
dc.description.abstract |
Let $G$ be a connected reductive group defined over a finite field ${\mathbb{F}}_{q}$ with corresponding Frobenius $F$. Let $\iota _{G}$ denote the duality involution defined by D. Prasad under the hypothesis $2\textrm{H}<^>{1}(F,Z(G))=0$, where $Z(G)$ denotes the center of $G$. We show that for each irreducible character $\rho $ of $G<^>{F}$, the involution $\iota _{G}$ takes $\rho $ to its dual $\rho <^>{\vee }$ if and only if for a suitable Jordan decomposition of characters, an associated unipotent character $u_{\rho }$ has Frobenius eigenvalues $\pm $ 1. As a corollary, we obtain that if $G$ has no exceptional factors and satisfies $2\textrm{H}<^>{1}(F,Z(G))=0$, then the duality involution $\iota _{G}$ takes $\rho $ to its dual $\rho <^>{\vee }$ for each irreducible character $\rho $ of $G<^>{F}$. Our results resolve a finite group counterpart of a conjecture of D. Prasad. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Oxford University Press |
en_US |
dc.subject |
Reductive groups |
en_US |
dc.subject |
Characters |
en_US |
dc.subject |
Representations |
en_US |
dc.subject |
2024-JAN-WEEK1 |
en_US |
dc.subject |
TOC-JAN-2024 |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Prasad’s Conjecture About Dualizing Involutions |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Mathematics Research Notices |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |