Digital Repository

Probing robustness of nonlinear filter stability numerically using Sinkhorn divergence

Show simple item record

dc.contributor.author Mandal, Pinak en_US
dc.contributor.author Roy, Shashank Kumar en_US
dc.contributor.author APTE, AMIT en_US
dc.date.accessioned 2024-02-05T07:27:42Z
dc.date.available 2024-02-05T07:27:42Z
dc.date.issued 2023-09 en_US
dc.identifier.citation Physica D: Nonlinear Phenomena, 451, 133765. en_US
dc.identifier.issn 0167-2789 en_US
dc.identifier.issn 1872-8022 en_US
dc.identifier.uri https://doi.org/10.1016/j.physd.2023.133765 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8465
dc.description.abstract Using the recently developed Sinkhorn algorithm for approximating the Wasserstein distance between probability distributions represented by Monte Carlo samples, we demonstrate exponential filter stability of two commonly used nonlinear filtering algorithms, namely, the particle filter and the ensemble Kalman filter, for deterministic dynamical systems. We also establish numerically a relation between filter stability and filter convergence by showing that the Wasserstein distance between filters with two different initial conditions is proportional to the bias or the RMSE of the filter. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Data assimilation en_US
dc.subject Nonlinear filtering en_US
dc.subject EnKF en_US
dc.subject 2023 en_US
dc.title Probing robustness of nonlinear filter stability numerically using Sinkhorn divergence en_US
dc.type Article en_US
dc.contributor.department Dept. of Data Science en_US
dc.identifier.sourcetitle Physica D: Nonlinear Phenomena en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account