Abstract:
A composite of catalytic Lewis acidic zirconium oxyhydroxides (8 wt %) and a covalent organic framework (COF) was synthesized. X-ray diffraction and infrared (IR) spectroscopy reveal that COF’s structure is preserved after loading with zirconium oxyhydroxides. Electron microscopy confirms a homogeneous distribution of nano- to sub-micron-sized zirconium clusters in the COF. 3D X-ray tomography captures the micron-sized channels connecting the well-dispersed zirconium clusters on the COF. The crystalline ZrOx(OH)y@COF’s nanostructure was model-optimized via simulated annealing methods. Using 0.8 mol % of the catalyst yielded a turnover number of 100–120 and a turnover frequency of 160–360 h−1 for Knoevenagel condensation in aqueous medium. Additionally, 2.2 mol % of catalyst catalyzes the hydrolysis of dimethyl nitrophenyl phosphate, a simulant of nerve agent Soman, with a conversion rate of 37% in 180 min. The hydrolytic detoxification of the live agent Soman is also achieved. Our study unveils COF-stabilized ZrOx(OH)y as a new class of zirconium-based Lewis + Bronsted-acid catalysts.