dc.contributor.author |
BANERJEE, DEBARGHA |
en_US |
dc.contributor.author |
RAI, VIVEK |
en_US |
dc.date.accessioned |
2024-02-12T11:50:11Z |
|
dc.date.available |
2024-02-12T11:50:11Z |
|
dc.date.issued |
2024-01 |
en_US |
dc.identifier.citation |
International Journal of Number Theory, 20(01), 199-220. |
en_US |
dc.identifier.issn |
1793-0421 |
en_US |
dc.identifier.issn |
1793-7310 |
en_US |
dc.identifier.uri |
https://doi.org/10.1142/S179304212450009X |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8502 |
|
dc.description.abstract |
In this paper, we show that the conjectural mod p local Langlands correspondence can be realized in the mod p cohomology of the Lubin-Tate towers. The proof utilizes a wellknown conjecture of Buzzard-Diamond-Jarvis [8, Conjecture 4.9], a study of completed cohomology of the ordinary and supersingular locus of the Shimura curves for a totally real field F and of mod l(? p) local Langlands correspondence as given by Emerton- Helm [20]. In the case of modular curves, a similar theorem was obtained by Chojecki [13]. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing Co Pte Ltd |
en_US |
dc.subject |
Galois representations |
en_US |
dc.subject |
Completed cohomology |
en_US |
dc.subject |
Shimura curves |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Towards a mod-p Lubin-Tate theory for GL2 over totally real fields |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Journal of Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |