dc.contributor.author |
HOGADI, AMIT |
en_US |
dc.contributor.author |
Yadav, Suraj |
en_US |
dc.date.accessioned |
2024-02-12T11:50:11Z |
|
dc.date.available |
2024-02-12T11:50:11Z |
|
dc.date.issued |
2023-03 |
en_US |
dc.identifier.citation |
Journal of the Institute of Mathematics of Jussieu, 23(03). |
en_US |
dc.identifier.issn |
1474-7480 |
en_US |
dc.identifier.issn |
1475-3030 |
en_US |
dc.identifier.uri |
https://doi.org/10.1017/S1474748023000087 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8503 |
|
dc.description.abstract |
In this note, we prove that the moduli stack of vector bundles on a curve with a fixed determinant is A(1)-connected. We obtain this result by classifying vector bundles on a curve up to A(1) concordance. Consequently, we classify P-n-bundles on a curve up to A(1)-weak equivalence, extending a result in [3] of Asok-Morel. We also give an explicit example of a variety which is A(1)-h-cobordant to a projective bundle over P-2 but does not have the structure of a projective bundle over P-2, thus answering a question of Asok-Kebekus-Wendt [2]. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Cambridge University Press |
en_US |
dc.subject |
𝔸1-connectedness |
en_US |
dc.subject |
Moduli of vector bundles |
en_US |
dc.subject |
𝔸1-concordance |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
A1-CONNECTEDNESS OF MODULI OF VECTOR BUNDLES ON A CURVE |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of the Institute of Mathematics of Jussieu |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |