Digital Repository

A1-CONNECTEDNESS OF MODULI OF VECTOR BUNDLES ON A CURVE

Show simple item record

dc.contributor.author HOGADI, AMIT en_US
dc.contributor.author Yadav, Suraj en_US
dc.date.accessioned 2024-02-12T11:50:11Z
dc.date.available 2024-02-12T11:50:11Z
dc.date.issued 2023-03 en_US
dc.identifier.citation Journal of the Institute of Mathematics of Jussieu, 23(03). en_US
dc.identifier.issn 1474-7480 en_US
dc.identifier.issn 1475-3030 en_US
dc.identifier.uri https://doi.org/10.1017/S1474748023000087 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8503
dc.description.abstract In this note, we prove that the moduli stack of vector bundles on a curve with a fixed determinant is A(1)-connected. We obtain this result by classifying vector bundles on a curve up to A(1) concordance. Consequently, we classify P-n-bundles on a curve up to A(1)-weak equivalence, extending a result in [3] of Asok-Morel. We also give an explicit example of a variety which is A(1)-h-cobordant to a projective bundle over P-2 but does not have the structure of a projective bundle over P-2, thus answering a question of Asok-Kebekus-Wendt [2]. en_US
dc.language.iso en en_US
dc.publisher Cambridge University Press en_US
dc.subject 𝔸1-connectedness en_US
dc.subject Moduli of vector bundles en_US
dc.subject 𝔸1-concordance en_US
dc.subject 2023 en_US
dc.title A1-CONNECTEDNESS OF MODULI OF VECTOR BUNDLES ON A CURVE en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of the Institute of Mathematics of Jussieu en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account