Abstract:
We develop a point-free approach for constructing the Nakano–Vashaw–Yakimov–Balmer spectrum of a noncommutative tensor triangulated category under certain assumptions. In particular, we provide a conceptual way of classifying radical thick tensor ideals of a noncommutative tensor triangulated category using frame theoretic methods, recovering the universal support data in the process. We further show that there is a homeomorphism between the spectral space of radical thick tensor ideals of a noncommutative tensor triangulated category and the collection of open subsets of its spectrum in the Hochster dual topology.