dc.contributor.author |
MALLICK, VIVEK MOHAN |
en_US |
dc.contributor.author |
Ray, Samarpita |
en_US |
dc.date.accessioned |
2024-04-24T05:42:52Z |
|
dc.date.available |
2024-04-24T05:42:52Z |
|
dc.date.issued |
2023-11 |
en_US |
dc.identifier.citation |
Comptes Rendus Mathématique, 361, 1415-1427. |
en_US |
dc.identifier.issn |
1631-073X |
en_US |
dc.identifier.issn |
1778-3569 |
en_US |
dc.identifier.uri |
https://doi.org/10.5802/crmath.461 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8700 |
|
dc.description.abstract |
We develop a point-free approach for constructing the Nakano–Vashaw–Yakimov–Balmer spectrum of a noncommutative tensor triangulated category under certain assumptions. In particular, we provide a conceptual way of classifying radical thick tensor ideals of a noncommutative tensor triangulated category using frame theoretic methods, recovering the universal support data in the process. We further show that there is a homeomorphism between the spectral space of radical thick tensor ideals of a noncommutative tensor triangulated category and the collection of open subsets of its spectrum in the Hochster dual topology. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Académie des sciences |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
2023 |
en_US |
dc.title |
Noncommutative tensor triangulated categories and coherent frames |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Comptes Rendus Mathématique |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |