Abstract:
This article presents spectroscopy results of the 5s5p P-3(0) -> 5s5d D-3(1) transition in all isotopes of laser cooled Sr atoms and the utility of this transition for repumping application. By employing the 5s5p P-3(0) -> 5s5d D-3(1) (483 nm) transition in combination with the excitation of 5s5p P-3(2) -> 5s6s S-3(1) (707 nm) transition, we observe a significant increase (similar to 13 fold) in the steady state number of atoms in the magneto-optic trap. This enhancement is attributed to the efficient repumping of Sr atoms that have decayed into the dark 5s5p P-3(2) state by returning them to the ground state 5s(2) S-1(0) without any loss into the other states. The absolute transition frequencies were measured with an absolute accuracy of 30 MHz. To support our measurements, we performed Fock-space relativistic coupled-cluster calculations of the relevant parameters in Sr To further increase the accuracy of the calculated properties, corrections from the Breit, quantum electrodynamical and perturbative triples were also included. The calculated branching ratio for the repumping state confirms the significantly increased population in the P-3(1) state. Thereby, leading to an increase of population of atoms trapped due to the enhanced repumping. Our calculated hyperfine-splitting energies are in excellent agreement with the measured values. Moreover, our calculated isotope shifts in the transition frequencies are in good agreement with our measured values.