Abstract:
Most of the intriguing properties at the nanoscale lie in the complex hybrid state rather than in the individual counterparts. Therefore, there is a need to create hybrid nanostructures that exhibit advanced optoelectronic properties such as better charge extraction, higher mechanical stability, coupling of inherently different sets of functions, etc. These hybrid architectures are beneficial because they allow one to take advantage of both the inherent features of each component separately. In this project, we have synthesized a hybrid nanostructure of Fe₃O₄-Au nanoparticles for using both the plasmonic and magnetic properties in catalytic and photocatalytic studies. The hybrid structure was well-characterized through various spectroscopy and microscopy techniques. For catalytic property of the hybrid Fe₃O₄-Au structure, an AuNP-based model catalytic 4-nitrophenol (PNP) to 4-aminophenol (AMP) reduction reaction was performed. The plasmonic property of AuNPs was also utilized for the photocatalytic ferricyanide reaction. The hybrid structure's magnetic property allowed us to carry out several catalytic cycles without losing any catalytic activity. In short, our work depicts the importance of hybrid nanoarchitecture in catalytic studies.