dc.contributor.author |
ANANTH, SUDARSHAN |
en_US |
dc.contributor.author |
BHAVE, NIPUN |
en_US |
dc.contributor.author |
PANDEY, CHETAN |
en_US |
dc.contributor.author |
PANT, SAURABH |
en_US |
dc.date.accessioned |
2024-05-29T07:21:32Z |
|
dc.date.available |
2024-05-29T07:21:32Z |
|
dc.date.issued |
2024-06 |
en_US |
dc.identifier.citation |
Physics Letters B, 853, 138704. |
en_US |
dc.identifier.issn |
1873-2445 |
en_US |
dc.identifier.issn |
0370-2693 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.physletb.2024.138704 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8953 |
|
dc.description.abstract |
We derive cubic interaction vertices for a class of higher-derivative theories involving three arbitrary integer spin fields. This derivation uses the requirement of closure of the Poincaré algebra in four-dimensional flat spacetime. We find two varieties of permitted structures at the cubic level and eliminate one variety, which is proportional to the equations of motion, using suitable field redefinitions. We then consider soft theorems for field theories with these higher-derivative interactions and construct amplitudes in these theories using the inverse-soft approach. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Physics |
en_US |
dc.subject |
2024-MAY-WEEK1 |
en_US |
dc.subject |
TOC-MAY-2024 |
en_US |
dc.title |
Deriving interaction vertices in higher derivative theories |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Physics |
en_US |
dc.identifier.sourcetitle |
Physics Letters B |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |