Digital Repository

Thermal Evolution of the Structure and Luminescence of the Hybrid-Cation-Stabilized [(4AMTP)PbBr2]2PbBr4 Layered Perovskite

Show simple item record

dc.contributor.author SHINGOTE, AJINKYA SUNDARNATH en_US
dc.contributor.author DUTTA, TANIYA en_US
dc.contributor.author RAJPUT, PARIKSHIT KUMAR en_US
dc.contributor.author NAG, ANGSHUMAN en_US
dc.date.accessioned 2024-05-29T07:21:53Z
dc.date.available 2024-05-29T07:21:53Z
dc.date.issued 2024-05 en_US
dc.identifier.citation Chemistry of Materials, 36(10), 5277–5283. en_US
dc.identifier.issn 0897-4756 en_US
dc.identifier.issn 1520-5002 en_US
dc.identifier.uri https://doi.org/10.1021/acs.chemmater.4c00905 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/8963
dc.description.abstract A typical layered hybrid perovskite, A(2)PbBr(4), consists of organic A-site cations and the inorganic [PbBr4](2-) perovskite layers. Alternatively, here the A-site cation itself is a hybrid one, namely, [(4AMTP)PbBr2](2)(2+), containing a nonperovskite PbBr2 type lattice and 4AMTP (4-aminomethyltetrahydropyran cation). How does this hybrid A-site cation influence the structure and luminescence of a [(4AMTP)PbBr2](2)PbBr4 2D layered perovskite? Here, we address this question by exploring crystal structure and photoluminescence (PL) in the temperature range 7-300 K. Centimeter-sized single crystals of [(4AMTP)PbBr2](2)PbBr4 show a stable monoclinic P2(1)/c space group in the entire temperature range, without showing any phase transition. The absence of a phase transition signifies higher structural rigidity brought in by the hybrid A-site cation, unlike typical A(2)PbBr(4) with organic A-site cations that often exhibit a phase transition in this temperature range. PL of [(4AMTP)PbBr2](2)PbBr4 at room temperature shows excitonic emissions similar to a typical A(2)PbBr(4) with an organic A-cation because neither hybrid nor organic A-site cations contribute to the valence and conduction band edges. Interestingly, below 70 K, the excitonic emission suddenly red-shifts by 15 meV from 3.017 to 3.002 eV, along with an order of magnitude increase in lifetime. Similar temperature-induced PL changes in monoclinic-phase layered perovskites were previously attributed to spin-forbidden "dark" exciton emissions, which become significant at lower temperatures. The hybrid A-site cation in [(4AMTP)PbBr2](2)PbBr4 stabilizes its monoclinic phase, influencing its luminescence characteristics. The hybrid A-site cations offer exciting prospects for tailoring the chemical composition, structure, and properties of layered perovskites, warranting the novel properties of halide perovskites. en_US
dc.language.iso en en_US
dc.publisher American Chemical Society en_US
dc.subject Cations en_US
dc.subject Crystal structure en_US
dc.subject Layers en_US
dc.subject Perovskites en_US
dc.subject Phase transitions en_US
dc.subject 2024 en_US
dc.subject 2024-MAY-WEEK3 en_US
dc.subject TOC-MAY-2024 en_US
dc.title Thermal Evolution of the Structure and Luminescence of the Hybrid-Cation-Stabilized [(4AMTP)PbBr2]2PbBr4 Layered Perovskite en_US
dc.type Article en_US
dc.contributor.department Dept. of Chemistry en_US
dc.identifier.sourcetitle Chemistry of Materials en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account