dc.contributor.author |
Kannan, M. Rajesh |
en_US |
dc.contributor.author |
Pragada, Shivaramakrishna |
en_US |
dc.contributor.author |
WANKHEDE, HITESH |
en_US |
dc.date.accessioned |
2024-07-12T06:42:16Z |
|
dc.date.available |
2024-07-12T06:42:16Z |
|
dc.date.issued |
2024-11 |
en_US |
dc.identifier.citation |
Discrete Applied Mathematics, 357, 264-273. |
en_US |
dc.identifier.issn |
0166-218X |
en_US |
dc.identifier.issn |
1872-6771 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.dam.2024.06.016 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9014 |
|
dc.description.abstract |
In 2010, Butler introduced the unfolding operation on a bipartite graph to produce two bipartite graphs, which are cospectral for the adjacency and the normalized Laplacian matrices. In this article, we describe how the idea of unfolding a bipartite graph with respect to another bipartite graph can be extended to nonbipartite graphs. In particular, we describe how unfoldings involving reflexive bipartite, semi-reflexive bipartite, and multipartite graphs are used to obtain cospectral nonisomorphic graphs for the adjacency matrix. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Adjacency matrix |
en_US |
dc.subject |
Cospectral graphs |
en_US |
dc.subject |
Partitioned tensor product |
en_US |
dc.subject |
Reflexive and semi reflexive graphs |
en_US |
dc.subject |
Unfolding |
en_US |
dc.subject |
2024 |
en_US |
dc.subject |
2024-JUL-WEEK1 |
en_US |
dc.subject |
TOC-JUL-2024 |
en_US |
dc.title |
Constructing cospectral graphs by unfolding non-bipartite graphs |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Discrete Applied Mathematics |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |