Abstract:
Semiconducting half-Heusler alloys are potential candidates for thermoelectric generators operational at high temperatures. In this work, the stability, electronic, and thermoelectric properties of 18 valence electron TiXPb (X=Ni, Pd, Pt) compounds are investigated using density functional theory and semi-classical Boltzmann transport theory. The compounds are both thermodynamically and dynamically stable. We find them to be semiconductors with indirect band gaps lying between 0.32-0.64 eV. Our calculations show that from thermoelectric performance perspective electrons exhibit better transport properties than holes. A combination of large power factor and low lattice thermal conductivity results in zT>1 in all the materials. Our calculations predict that amongst the three compounds, TiPtPb have a maximum value of zT for both electrons and holes. In this material our calculation yields a maximum zT of 2.22 at 900 K for n-type doping at a doping concentration of 9.46 x 10(20)cm(-3) and 1.80 at 900 K for p-type doping at a doping concentration of 4.51 x 10(20) cm(-3).