Digital Repository

Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe–S cluster homeostasis in Mycobacterium tuberculosis

Show simple item record

dc.contributor.author Dewan, Arshiya en_US
dc.contributor.author JAIN, CHARU en_US
dc.contributor.author Das, Mayashree en_US
dc.contributor.author Tripathi, Ashutosh en_US
dc.contributor.author SHARMA, AJAY KUMAR en_US
dc.contributor.author SINGH, HARSHIT en_US
dc.contributor.author Malhotra, Nitish en_US
dc.contributor.author Seshasayee, Aswin Sai Narain en_US
dc.contributor.author CHAKRAPANI, HARINATH en_US
dc.contributor.author Singh, Amit en_US
dc.date.accessioned 2024-08-28T05:17:57Z
dc.date.available 2024-08-28T05:17:57Z
dc.date.issued 2024-09 en_US
dc.identifier.citation Redox Biology, 75, 103285 en_US
dc.identifier.issn 2213-2317 en_US
dc.identifier.uri https://doi.org/10.1016/j.redox.2024.103285 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9061
dc.description.abstract The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•−) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•− generates peroxynitrite (ONOO−), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•− is well established, how Mtb responds to ONOO− remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•−, which should combine to produce ONOO−. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO− levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO−. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe–4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe–4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe–S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO− in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO− and targeting Fe–S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB). en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Peroxynitrite en_US
dc.subject Tuberculosis en_US
dc.subject Fe–S clusters en_US
dc.subject Redox en_US
dc.subject Bioenergetics en_US
dc.subject 2024-AUG-WEEK3 en_US
dc.subject TOC-AUG-2024 en_US
dc.title Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe–S cluster homeostasis in Mycobacterium tuberculosis en_US
dc.type Article en_US
dc.contributor.department Dept. of Chemistry en_US
dc.identifier.sourcetitle Redox Biology en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account