dc.contributor.author |
CHORWADWALA, ANISA |
en_US |
dc.date.accessioned |
2024-09-30T08:55:02Z |
|
dc.date.available |
2024-09-30T08:55:02Z |
|
dc.date.issued |
2024-08 |
en_US |
dc.identifier.citation |
Blackboard, 7, 109-114. |
en_US |
dc.identifier.issn |
0004-9727 |
en_US |
dc.identifier.issn |
1755-1633 |
en_US |
dc.identifier.uri |
https://www.mtai.org.in/wp-content/uploads/2024/09/blackboard-issue-7.pdf |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9109 |
|
dc.description.abstract |
Recall that, for two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in R n , their dot product x · y is defined as x1y1 + x2y2 + · · · + xnyn. Here, n ≥ 1 is a natural number. Note that when n = 1, this dot product is just the product of the two real numbers x and y. Consider the Euclidean space E n := (R n , ·), that is, our usual finite dimensional vector space R n equipped with the dot product. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Mathematics Teachers’ Association (India) |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
2024 |
en_US |
dc.subject |
2024-SEP-WEEK3 |
en_US |
dc.subject |
TOC-SEP-2024 |
en_US |
dc.title |
We are what we think we are! |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Bulletin of Mathematics Teachers' Association |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |