Digital Repository

Elementary Action of Classical Groups on Unimodular Rows Over Monoid Rings

Show simple item record

dc.contributor.author BASU, RABEYA en_US
dc.contributor.author MATHEW, MARIA A. en_US
dc.date.accessioned 2024-10-29T06:44:40Z
dc.date.available 2024-10-29T06:44:40Z
dc.date.issued 2024-10 en_US
dc.identifier.citation Transformation Groups en_US
dc.identifier.issn 1083-4362 en_US
dc.identifier.issn 1531-586X en_US
dc.identifier.uri https://doi.org/10.1007/s00031-024-09883-y en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9145
dc.description.abstract The elementary action of symplectic and orthogonal groups on unimodular rows of length 2n is transitive for 2n >= max(4,d+2) in the symplectic case, and 2n >= max(6,2d+4) in the orthogonal case, over monoid rings R[M], where R is a commutative noetherian ring of dimension d, and M is commutative cancellative torsion free monoid. As a consequence, one gets the surjective stabilization bound for the K-1 for classical groups. This is an extension of J. Gubeladze's results for linear groups en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Monoid ring en_US
dc.subject Classical group en_US
dc.subject Unimodular row en_US
dc.subject Elementary action en_US
dc.subject Milnor patching en_US
dc.subject Cancellative monoid en_US
dc.subject K-1-stability en_US
dc.subject 2024 en_US
dc.subject 2024-OCT-WEEK2 en_US
dc.subject TOC-OCT-2024  en_US
dc.title Elementary Action of Classical Groups on Unimodular Rows Over Monoid Rings en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Transformation Groups en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account