dc.contributor.author |
BASU, RABEYA |
en_US |
dc.contributor.author |
MATHEW, MARIA A. |
en_US |
dc.date.accessioned |
2024-10-29T06:44:40Z |
|
dc.date.available |
2024-10-29T06:44:40Z |
|
dc.date.issued |
2024-10 |
en_US |
dc.identifier.citation |
Transformation Groups |
en_US |
dc.identifier.issn |
1083-4362 |
en_US |
dc.identifier.issn |
1531-586X |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s00031-024-09883-y |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9145 |
|
dc.description.abstract |
The elementary action of symplectic and orthogonal groups on unimodular rows of length 2n is transitive for 2n >= max(4,d+2) in the symplectic case, and 2n >= max(6,2d+4) in the orthogonal case, over monoid rings R[M], where R is a commutative noetherian ring of dimension d, and M is commutative cancellative torsion free monoid. As a consequence, one gets the surjective stabilization bound for the K-1 for classical groups. This is an extension of J. Gubeladze's results for linear groups |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Monoid ring |
en_US |
dc.subject |
Classical group |
en_US |
dc.subject |
Unimodular row |
en_US |
dc.subject |
Elementary action |
en_US |
dc.subject |
Milnor patching |
en_US |
dc.subject |
Cancellative monoid |
en_US |
dc.subject |
K-1-stability |
en_US |
dc.subject |
2024 |
en_US |
dc.subject |
2024-OCT-WEEK2 |
en_US |
dc.subject |
TOC-OCT-2024 |
en_US |
dc.title |
Elementary Action of Classical Groups on Unimodular Rows Over Monoid Rings |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Transformation Groups |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |