dc.contributor.author |
Balasubramanian, Kumar |
en_US |
dc.contributor.author |
KAIPA, KRISHNA |
en_US |
dc.contributor.author |
Khurana, Himanshi |
en_US |
dc.date.accessioned |
2024-11-22T06:10:46Z |
|
dc.date.available |
2024-11-22T06:10:46Z |
|
dc.date.issued |
2025-01 |
en_US |
dc.identifier.citation |
Linear Algebra and its Applications, 704, 35-57. |
en_US |
dc.identifier.issn |
0024-3795 |
en_US |
dc.identifier.issn |
1873-1856 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.laa.2024.10.011 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9183 |
|
dc.description.abstract |
Let F be the finite field of order q and M(n, n, r, F ) be the set of n x n matrices of rank r over the field F . For alpha E F and A E M(n, n, F ), let Z alpha A,r = {X X E M(n, n, r, F ) Tr(AX) AX ) = alpha } . In this article, we solve the problem of determining the cardinality of Z alpha A,r . We also solve the generalization of the problem to rectangular matrices. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Rank |
en_US |
dc.subject |
Trace |
en_US |
dc.subject |
Cardinality |
en_US |
dc.subject |
Generating function |
en_US |
dc.subject |
2024-NOV-WEEK3 |
en_US |
dc.subject |
TOC-NOV-2024 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
On the cardinality of matrices with prescribed rank and partial trace over a finite field |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Linear Algebra and its Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |