Digital Repository

Higher order fractional weighted homogeneous spaces: Characterization and finer embeddings

Show simple item record

dc.contributor.author BISWAS, NIRJAN en_US
dc.contributor.author Kumar, Rohit en_US
dc.date.accessioned 2024-11-22T06:10:46Z
dc.date.available 2024-11-22T06:10:46Z
dc.date.issued 2025-03 en_US
dc.identifier.citation Journal of Mathematical Analysis and Application, 543(02), Part 2 en_US
dc.identifier.issn 0022-247X en_US
dc.identifier.issn 1096-0813 en_US
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2024.128935 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9185
dc.description.abstract In this article, for N >= 2, s is an element of (1, 2), p is an element of (1, N/s), sigma = s - 1and a is an element of [0, N-sp/2), we establish an isometric isomorphism between the higher order fractional weighted Beppo-Levi spaceD-a(s,p) (R-N) := <((CCR)-R-infinity(N))over bar>([center dot]s, p, a)where [u] s,p,a := (integral integral(RN x RN) |del u(x)- del u(y)|(p)/|x - y|(N+ sigma p) dx|x|(a) dy/|y|(a))(p),and higher order fractional weighted homogeneous space (W) over circle (s,p)(a) (R-N) := {u is an element of L-a(ps)*(R-N) : en_US
dc.description.abstract del u en_US
dc.description.abstract (Lap sigma*(RN)) + [u](s ,p,a) < infinity}with the weighted Lebesgue norm en_US
dc.description.abstract u en_US
dc.description.abstract (Lap sigma*(RN)) := integral(RN) |u(x)|(p)alpha*/|x|2ap alpha*/p dx) 1/p alpha*, where p alpha* = Np/N - alpha p for alpha = s, sigma. To achieve this, we prove that C-c(infinity)(R-N) is dense in (W) over circle (s,p)(a) (R-N) with respect to [center dot](s,p,a), and [center dot] (s,p,a) is an equivalent norm on (W) over circle (s,p)(a) (R-N). Further, we obtain a finer embedding of D-a(s,p)(R-N) into the Lorentz space L Np/N- sp-2a, p(R-N), where L Np/N- sp-2a, p(R-N) not subset of L-a(ps)*(R-N). (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Higher order fractional weighted Sobolev spaces en_US
dc.subject Density of smooth functions with compact support en_US
dc.subject Equivalent norms en_US
dc.subject Lorentz-Sobolev embeddings en_US
dc.subject 2025 en_US
dc.title Higher order fractional weighted homogeneous spaces: Characterization and finer embeddings en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Mathematical Analysis and Application en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account