dc.contributor.author |
De Bruyn, Bart |
en_US |
dc.contributor.author |
PRADHAN, PUSPENDU |
en_US |
dc.contributor.author |
Sahoo, Binod Kumar |
en_US |
dc.date.accessioned |
2025-01-31T06:28:28Z |
|
dc.date.available |
2025-01-31T06:28:28Z |
|
dc.date.issued |
2025-01 |
en_US |
dc.identifier.citation |
Designs, Codes and Cryptography |
en_US |
dc.identifier.issn |
0925-1022 |
en_US |
dc.identifier.issn |
1573-7586 |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s10623-024-01559-8 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9291 |
|
dc.description.abstract |
For a set L of lines of PG(n, q), a set X of points of PG(n, q) is called an L-blocking set if each line of L contains at least one point of X. Consider a possibly singular quadric Q of PG(n, q) and denote by S (respectively, T) the set of all lines of PG(n, q) meeting Q in 2 (respectively, 1 or q + 1) points. For L is an element of{S, T. S}, we find the minimal cardinality of an L-blocking set of PG(n, q) and determine all L-blocking sets of that minimal cardinality. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Projective space |
en_US |
dc.subject |
Blocking set |
en_US |
dc.subject |
Conic |
en_US |
dc.subject |
Quadric |
en_US |
dc.subject |
Cone |
en_US |
dc.subject |
Secant line |
en_US |
dc.subject |
Tangent line |
en_US |
dc.subject |
2025-JAN-WEEK1|TOC-JAN-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q) |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Designs, Codes and Cryptography |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |