Digital Repository

Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q)

Show simple item record

dc.contributor.author De Bruyn, Bart en_US
dc.contributor.author PRADHAN, PUSPENDU en_US
dc.contributor.author Sahoo, Binod Kumar en_US
dc.date.accessioned 2025-01-31T06:28:28Z
dc.date.available 2025-01-31T06:28:28Z
dc.date.issued 2025-01 en_US
dc.identifier.citation Designs, Codes and Cryptography en_US
dc.identifier.issn 0925-1022 en_US
dc.identifier.issn 1573-7586 en_US
dc.identifier.uri https://doi.org/10.1007/s10623-024-01559-8 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9291
dc.description.abstract For a set L of lines of PG(n, q), a set X of points of PG(n, q) is called an L-blocking set if each line of L contains at least one point of X. Consider a possibly singular quadric Q of PG(n, q) and denote by S (respectively, T) the set of all lines of PG(n, q) meeting Q in 2 (respectively, 1 or q + 1) points. For L is an element of{S, T. S}, we find the minimal cardinality of an L-blocking set of PG(n, q) and determine all L-blocking sets of that minimal cardinality. en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Projective space en_US
dc.subject Blocking set en_US
dc.subject Conic en_US
dc.subject Quadric en_US
dc.subject Cone en_US
dc.subject Secant line en_US
dc.subject Tangent line en_US
dc.subject 2025-JAN-WEEK1|TOC-JAN-2025 en_US
dc.subject 2025 en_US
dc.title Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q) en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Designs, Codes and Cryptography en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account