Digital Repository

Age-dependent dynamics of neuronal VAPBALS inclusions in the adult brain

Show simple item record

dc.contributor.author THULASIDHARAN, APARNA en_US
dc.contributor.author GARG, LOVLEEN en_US
dc.contributor.author TENDULKAR, SHWETA en_US
dc.contributor.author RATNAPARKHI, GIRISH S. en_US
dc.date.accessioned 2025-03-21T05:20:45Z
dc.date.available 2025-03-21T05:20:45Z
dc.date.issued 2024-06 en_US
dc.identifier.citation Neurobiology of Disease, 196, 106517. en_US
dc.identifier.issn 1095-953X en_US
dc.identifier.issn 0969-9961 en_US
dc.identifier.uri https://doi.org/10.1016/j.nbd.2024.106517 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9408
dc.description.abstract Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5–15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Valosin en_US
dc.subject Autophagy en_US
dc.subject ALS8 en_US
dc.subject p97 en_US
dc.subject Neuroaggregate en_US
dc.subject Ageing en_US
dc.subject FAF1 en_US
dc.subject ALS14 en_US
dc.subject TER94 en_US
dc.subject VCP en_US
dc.subject 2024 en_US
dc.title Age-dependent dynamics of neuronal VAPBALS inclusions in the adult brain en_US
dc.type Article en_US
dc.contributor.department Dept. of Biology en_US
dc.identifier.sourcetitle Neurobiology of Disease en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account