dc.contributor.author |
KAIPA, KRISHNA |
en_US |
dc.contributor.author |
PRADHAN, PUSPENDU |
en_US |
dc.date.accessioned |
2025-04-01T05:18:42Z |
|
dc.date.available |
2025-04-01T05:18:42Z |
|
dc.date.issued |
2025-03 |
en_US |
dc.identifier.citation |
Journal of Algebra and Its Applications |
en_US |
dc.identifier.issn |
0219-4988 |
en_US |
dc.identifier.issn |
1793-6829 |
en_US |
dc.identifier.uri |
https://doi.org/10.1142/S0219498825410075 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9430 |
|
dc.description.abstract |
The problem studied in this work is to determine the higher weight spectra of the Projective Reed–Muller codes associated to the Veronese 3 -fold V in P G ( 9 , q ) , which is the image of the quadratic Veronese embedding of P G ( 3 , q ) in P G ( 9 , q ) . We reduce the problem to the following combinatorial problem in finite geometry: For each subset S of V , determine the dimension of the linear subspace of P G ( 9 , q ) generated by S . We develop a systematic method to solve the latter problem. We implement the method for q = 3 , and use it to obtain the higher weight spectra of the associated code. The case of a general finite field F q will be treated in a future work. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific Publishing Co. |
en_US |
dc.subject |
Quadratic Veronese varieties |
en_US |
dc.subject |
Veronese code |
en_US |
dc.subject |
Linear system of quadrics |
en_US |
dc.subject |
Generalized weight enumerator polynomial |
en_US |
dc.subject |
Extended weight enumerator polynomial |
en_US |
dc.subject |
2025-MAR-WEEK4 |
en_US |
dc.subject |
TOC-MAR-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Higher weight spectra of ternary codes associated to the quadratic Veronese 3-fold |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Algebra and Its Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |