dc.contributor.author |
BANERJEE, DEBARGHA |
en_US |
dc.contributor.author |
Mandal, Tathagata |
en_US |
dc.contributor.author |
Mondal, Sudipa |
en_US |
dc.date.accessioned |
2025-04-01T05:18:43Z |
|
dc.date.available |
2025-04-01T05:18:43Z |
|
dc.date.issued |
2025-10 |
en_US |
dc.identifier.citation |
Journal of Number Theory, 25, 160-195 |
en_US |
dc.identifier.issn |
0022-314X |
en_US |
dc.identifier.issn |
1096-1658 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.jnt.2024.12.013 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9438 |
|
dc.description.abstract |
In this article, we study two important properties of the symmetric cube transfer of the automorphic representation π associated to a modular form. We first show how the local epsilon factor at each prime changes by twisting in terms of the local Weil-Deligne representation. From this variation number, for each prime p, we classify the types of transfers of the local representations . We also compute the conductor of as it is involved in the variation number. For transfer, the most difficult prime is . |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier |
en_US |
dc.subject |
Modular forms |
en_US |
dc.subject |
Galois representations |
en_US |
dc.subject |
Local epsilon factors |
en_US |
dc.subject |
Conductors |
en_US |
dc.subject |
2025-MAR-WEEK4 |
en_US |
dc.subject |
TOC-MAR-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Two properties of symmetric cube transfers of modular forms |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Number Theory |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |