Digital Repository

On infinitesimal τ -isospectrality of locally symmetric spaces

Show simple item record

dc.contributor.author BHAGWAT, CHANDRASHEEL
dc.contributor.author MONDAL, KAUSTABH
dc.contributor.author Sachdeva, Gunja
dc.date.accessioned 2025-04-01T10:54:27Z
dc.date.available 2025-04-01T10:54:27Z
dc.date.issued 2025-01
dc.identifier.citation Canadian Mathematical Bulletin, 68(01), 246 – 261. en_US
dc.identifier.issn 0008-4395
dc.identifier.issn 1496-4287
dc.identifier.uri https://doi.org/10.4153/S0008439524000882 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9445
dc.description.abstract Let (τ,Vτ) be a finite dimensional representation of a maximal compact subgroup K of a connected non-compact semisimple Lie group G, and let Γ be a uniform torsion-free lattice in G. We obtain an infinitesimal version of the celebrated Matsushima–Murakami formula, which relates the dimension of the space of automorphic forms associated to τ and multiplicities of irreducible τ∨ -spherical spectra in L2(Γ∖G) . This result gives a promising tool to study the joint spectra of all central operators on the homogenous bundle associated to the locally symmetric space and hence its infinitesimal τ -isospectrality. Along with this, we prove that the almost equality of τ -spherical spectra of two lattices assures the equality of their τ -spherical spectra. en_US
dc.language.iso en en_US
dc.publisher Cambridge University Press en_US
dc.subject Representation equivalence en_US
dc.subject Isospectrality en_US
dc.subject Selberg trace formula en_US
dc.subject Non-compact symmetric space en_US
dc.subject 2025-MAR-WEEK1 en_US
dc.subject 2025 en_US
dc.subject TOC-MAR-2025 en_US
dc.title On infinitesimal τ -isospectrality of locally symmetric spaces en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Canadian Mathematical Bulletin en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account