dc.contributor.author |
BHAGWAT, CHANDRASHEEL |
|
dc.contributor.author |
MONDAL, KAUSTABH |
|
dc.contributor.author |
Sachdeva, Gunja |
|
dc.date.accessioned |
2025-04-01T10:54:27Z |
|
dc.date.available |
2025-04-01T10:54:27Z |
|
dc.date.issued |
2025-01 |
|
dc.identifier.citation |
Canadian Mathematical Bulletin, 68(01), 246 – 261. |
en_US |
dc.identifier.issn |
0008-4395 |
|
dc.identifier.issn |
1496-4287 |
|
dc.identifier.uri |
https://doi.org/10.4153/S0008439524000882 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9445 |
|
dc.description.abstract |
Let (τ,Vτ)
be a finite dimensional representation of a maximal compact subgroup K of a connected non-compact semisimple Lie group G, and let Γ
be a uniform torsion-free lattice in G. We obtain an infinitesimal version of the celebrated Matsushima–Murakami formula, which relates the dimension of the space of automorphic forms associated to τ
and multiplicities of irreducible τ∨
-spherical spectra in L2(Γ∖G)
. This result gives a promising tool to study the joint spectra of all central operators on the homogenous bundle associated to the locally symmetric space and hence its infinitesimal τ
-isospectrality. Along with this, we prove that the almost equality of τ
-spherical spectra of two lattices assures the equality of their τ
-spherical spectra. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Cambridge University Press |
en_US |
dc.subject |
Representation equivalence |
en_US |
dc.subject |
Isospectrality |
en_US |
dc.subject |
Selberg trace formula |
en_US |
dc.subject |
Non-compact symmetric space |
en_US |
dc.subject |
2025-MAR-WEEK1 |
en_US |
dc.subject |
2025 |
en_US |
dc.subject |
TOC-MAR-2025 |
en_US |
dc.title |
On infinitesimal τ -isospectrality of locally symmetric spaces |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Canadian Mathematical Bulletin |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |