Digital Repository

A lower bound for the discrepancy in a Sato-Tate type measure

Show simple item record

dc.contributor.author DAS, JISHU en_US
dc.date.accessioned 2025-04-15T06:43:31Z
dc.date.available 2025-04-15T06:43:31Z
dc.date.issued 2024-10 en_US
dc.identifier.citation Ramanujan Journal, 65, 637-658. en_US
dc.identifier.issn 1382-4090 en_US
dc.identifier.issn 1572-9303 en_US
dc.identifier.uri https://doi.org/10.1007/s11139-024-00909-3 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9464
dc.description.abstract Let Sk(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k(N)$$\end{document} denote the space of cusp forms of even integer weight k and level N. We prove an asymptotic for the Petersson trace formula for Sk(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k(N)$$\end{document} under an appropriate condition. Using the non-vanishing of a Kloosterman sum involved in the asymptotic, we give a lower bound for discrepancy in the Sato-Tate distribution for levels not divisible by 8. This generalizes a result of Jung and Sardari (Math Ann 378(1-2):513-557, 2020, Theorem 1.6) for squarefree levels. An analogue of the Sato-Tate distribution was obtained by Omar and Mazhouda (Ramanujan J 20(1):81-89, 2009, Theorem 3) for the distribution of eigenvalues lambda p2(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{p<^>2}(f)$$\end{document} where f is a Hecke eigenform and p is a prime number. As an application of the above-mentioned asymptotic, we obtain a sequence of weights kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n$$\end{document} such that discrepancy in the analogue distribution obtained in Omar and Mazhouda (Ramanujan J 20(1):81-89, 2009) has a lower bound en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Discrepancy en_US
dc.subject Petersson trace formula en_US
dc.subject Kloosterman sums en_US
dc.subject Sato-Tate measure en_US
dc.subject 2024 en_US
dc.title A lower bound for the discrepancy in a Sato-Tate type measure en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Ramanujan Journal en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account