Digital Repository

Waring problem for triangular matrix algebra

Show simple item record

dc.contributor.author KAUSHIK, RAHUL en_US
dc.contributor.author SINGH, ANUPAM en_US
dc.date.accessioned 2025-04-15T06:43:31Z
dc.date.available 2025-04-15T06:43:31Z
dc.date.issued 2024-07 en_US
dc.identifier.citation Linear Algebra and its Applications, 696, 135-159. en_US
dc.identifier.issn 0024-3795 en_US
dc.identifier.issn 1873-1856 en_US
dc.identifier.uri https://doi.org/10.1016/j.laa.2024.03.031 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9465
dc.description.abstract The Matrix Waring problem is if we can write every matrix as a sum of k -th powers. Here, we look at the same problem for triangular matrix algebra T-n ( F-q) consisting of upper triangular matrices over a finite field. We prove that for all integers k, n >= 1, there exists a constant C ( k, n ), such that for all q > C ( k, n ), every matrix in T-n ( F-q) is a sum of three k -th powers. Moreover, if - 1 is k -th power in F-q , then for all q > C ( k, n ), every matrix in T-n ( F-q) is a sum of two k - th powers. We make use of Lang -Weil estimates about the number of solutions of equations over finite fields to achieve the desired results. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Waring problem en_US
dc.subject Lang-Weil estimate en_US
dc.subject Triangular matrices en_US
dc.subject 2024 en_US
dc.title Waring problem for triangular matrix algebra en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Linear Algebra and its Applications en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account