dc.contributor.author |
KAUSHIK, RAHUL |
en_US |
dc.contributor.author |
SINGH, ANUPAM |
en_US |
dc.date.accessioned |
2025-04-15T06:43:31Z |
|
dc.date.available |
2025-04-15T06:43:31Z |
|
dc.date.issued |
2024-07 |
en_US |
dc.identifier.citation |
Linear Algebra and its Applications, 696, 135-159. |
en_US |
dc.identifier.issn |
0024-3795 |
en_US |
dc.identifier.issn |
1873-1856 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.laa.2024.03.031 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9465 |
|
dc.description.abstract |
The Matrix Waring problem is if we can write every matrix as a sum of k -th powers. Here, we look at the same problem for triangular matrix algebra T-n ( F-q) consisting of upper triangular matrices over a finite field. We prove that for all integers k, n >= 1, there exists a constant C ( k, n ), such that for all q > C ( k, n ), every matrix in T-n ( F-q) is a sum of three k -th powers. Moreover, if - 1 is k -th power in F-q , then for all q > C ( k, n ), every matrix in T-n ( F-q) is a sum of two k - th powers. We make use of Lang -Weil estimates about the number of solutions of equations over finite fields to achieve the desired results. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Waring problem |
en_US |
dc.subject |
Lang-Weil estimate |
en_US |
dc.subject |
Triangular matrices |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Waring problem for triangular matrix algebra |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Linear Algebra and its Applications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |