dc.contributor.author |
MAHATO, TUMPA |
en_US |
dc.contributor.author |
Shimizu, Ayaka |
en_US |
dc.date.accessioned |
2025-04-15T06:50:32Z |
|
dc.date.available |
2025-04-15T06:50:32Z |
|
dc.date.issued |
2024-11 |
en_US |
dc.identifier.citation |
Journal of Knot Theory and Its Ramifications, 33(13). |
en_US |
dc.identifier.issn |
0218-2165 |
en_US |
dc.identifier.issn |
1793-6527 |
en_US |
dc.identifier.uri |
https://doi.org/10.1142/S0218216524500421 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9503 |
|
dc.description.abstract |
A set of regions of a link projection is said to be isolated if any pair of regions in the set share no crossings. The isolate-region number of a link projection is the maximum value of the cardinality for isolated sets of regions of the link projection. In this paper, all the link projections of isolate-region number one are determined. Also, estimations for welded unknotting number and a combinatorial way to find the isolate-region number are discussed, and a formula of the generating function of isolated-region sets is given for the standard projections of (2,n)(2,n)-torus links. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
World Scientific |
en_US |
dc.subject |
Isolate-region number |
en_US |
dc.subject |
Isolated regions |
en_US |
dc.subject |
Link projection |
en_US |
dc.subject |
Warping degree |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Isolated regions of a link projection |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Knot Theory and Its Ramifications |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |