dc.contributor.author |
Aryasomayajula, Anilatmaja |
en_US |
dc.contributor.author |
BALASUBRAMANYAM, BASKAR |
en_US |
dc.contributor.author |
Roy, Dyuti |
en_US |
dc.date.accessioned |
2025-04-15T06:50:32Z |
|
dc.date.available |
2025-04-15T06:50:32Z |
|
dc.date.issued |
2025 |
en_US |
dc.identifier.citation |
Forum Mathematicum, 37(02). |
en_US |
dc.identifier.issn |
0933-7741 |
en_US |
dc.identifier.issn |
1435-5337 |
en_US |
dc.identifier.uri |
https://doi.org/10.1515/forum-2023-0079 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9509 |
|
dc.description.abstract |
In this article, for n >= 2, we compute asymptotic, qualitative, and quantitative estimates of the Bergman kernel of Picard modular cusp forms associated to torsion-free, cocompact subgroups of SU((n, 1), C). The main result of the article is the following result. Let Gamma subset of SU(( 2, 1), O-K) be a torsion-free subgroup of finite index, where K is a totally imaginary field. Let B-Gamma(k) denote the Bergman kernel associated to the S-k(Gamma), complex vector space of weight-k cusp forms with respect to Gamma. Let B-2 denote the 2-dimensional complex ball endowed with the hyperbolic metric, and let X-Gamma := Gamma\B-2 denote the quotient space, which is a noncompact complex manifold of dimension 2. Let | center dot |(pet) denote the point-wise Petersson norm on S-k(Gamma). Then, for k >> 1, we have the following estimate: |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
De Gruyter Bill |
en_US |
dc.subject |
Sup-norm bounds of cusp forms |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Estimates of Picard modular cusp forms |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Forum Mathematicum |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |