dc.contributor.author |
PANJA, SAIKAT |
en_US |
dc.contributor.author |
Prasad, Sachchidanand |
en_US |
dc.date.accessioned |
2025-04-15T06:51:47Z |
|
dc.date.available |
2025-04-15T06:51:47Z |
|
dc.date.issued |
2024 |
en_US |
dc.identifier.citation |
Miskolc Mathematical Notes, 25 (01), 425-428. |
en_US |
dc.identifier.issn |
1787-2405 |
en_US |
dc.identifier.issn |
1787-2413 |
en_US |
dc.identifier.uri |
https://doi.org/10.18514/MMN.2024.4383 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9522 |
|
dc.description.abstract |
It was conjectured that the augmentation ideal of a dihedral quandle of even order n > 2 satisfies |Δk(Rn)∕Δk+1(Rn)| = n for all k ≥ 2. In this article we provide a counterexample against this conjecture. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Institute of Mathematics, University of Miskolc Miskolc, Hungary |
en_US |
dc.subject |
Quandle rings |
en_US |
dc.subject |
Augmentation ideal |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Counterexample to a conjecture about dihedral quandle |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Miskolc Mathematical Notes |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |