Digital Repository

Counterexample to a conjecture about dihedral quandle

Show simple item record

dc.contributor.author PANJA, SAIKAT en_US
dc.contributor.author Prasad, Sachchidanand en_US
dc.date.accessioned 2025-04-15T06:51:47Z
dc.date.available 2025-04-15T06:51:47Z
dc.date.issued 2024 en_US
dc.identifier.citation Miskolc Mathematical Notes, 25 (01), 425-428. en_US
dc.identifier.issn 1787-2405 en_US
dc.identifier.issn 1787-2413 en_US
dc.identifier.uri https://doi.org/10.18514/MMN.2024.4383 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9522
dc.description.abstract It was conjectured that the augmentation ideal of a dihedral quandle of even order n > 2 satisfies |Δk(Rn)∕Δk+1(Rn)| = n for all k ≥ 2. In this article we provide a counterexample against this conjecture. en_US
dc.language.iso en en_US
dc.publisher Institute of Mathematics, University of Miskolc Miskolc, Hungary en_US
dc.subject Quandle rings en_US
dc.subject Augmentation ideal en_US
dc.subject 2024 en_US
dc.title Counterexample to a conjecture about dihedral quandle en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Miskolc Mathematical Notes en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account